Pre-scoping Document for the Natura 2000 Seminar

at the Mediterranean Region

Prepared by:

Marita Arvela, Jérôme Bailly Maitre, Doug Evans, Brian Mac Sharry (MNHN), Mora Aronsson (SLU) – ETC/BD

EEA project manager: Paco Sánchez-Aguado, Francisco.Sanchez@eea.europa.eu ETC/BD task manager: Marita Arvela, marita.arvela@mnhn.fr Work package no.: 1.2.1.A.3

Date: 15/10/2013

The European Topic Centre on Biological Diversity (ETC/BD) is a consortium of nine organisations under a Framework Partnership Agreement with the European Environment Agency

Contents

1. Background	2
2. General information on the Mediterranean region	4
3. The Article 17 (conservation status) reporting	9
4. Identifying habitat types & species for the Mediterranean Seminar – preparatory work	12
4.1 Data and method used for the analysis & ranking of species and habitat groups	12
4.1.1 Data used	. 12
4.1.2 Methods used	. 12
4.2. Results	. 17
5. Background information sheets for selected 23 habitat types	. 21
Appendix 1. List of species and habitats types of the Mediterranean region	n66
Appendix 2. Coverage of the habitat types and species in the Natura 2000 network	

1. Background

The new Natura 2000 Seminars at the biogeographical level aim to exchange and analyse information on measures necessary to achieving favourable conservation status of species and habitats of Community interest, with special attention to the management and coherence of the Natura 2000network. The seminars involve Member States, key user groups, NGOs and independent experts.

It is important to keep in mind that the Natura 2000 Seminars under discussion are a new process and should not be confused with the biogeographical seminars examining the Member State proposals for SCIs which started in the late 1990s.

The draft Terms of Reference for the new process of Natura 2000 seminars dated 8.4.2011 identifies a pre-scoping phase with the following preparatory work (page 3 and 4):

- Background work to identify relevant criteria to focus further analysis and discussions (e.g. focus on species and habitats related to ecosystems that are of special importance or under particular threat for a biogeographical region, focus on the most threatened species and habitats or focus on species and habitats for which response to measures is likely, focus on habitats that provide important ecosystem services, including in relation to climate change mitigation and adaptation, not to select species and habitats present only in one Member State or where already at favourable conservation status).
- Identifying the species and habitat types considered to be priorities for discussion at a seminar, using existing data from the biogeographical region and the Article 17 reporting process, also having regard to the nature sub-target of the new EU biodiversity strategy.
- A consultation phase with Member States, Commission and stakeholders to agree which criteria to use and to decide on the species and habitat types or clusters of species or habitat types that will finally be selected. The expert group on Natura 2000 management being the most appropriate forum for this consultation.

NB: The "pre-scoping documents" for Natura 2000 Seminars are developed in two or three stages; at each drafting stage there will be additional information and sections. Draft versions are subsequently expanded and completed to take into account decisions by the Steering Committees of each region.

The document is targeted to serve the discussion and planning of the seminar for the Mediterranean region. The 1st (draft) pre-scoping document dated 12.2.2013 by the ETC/BD was part of the pre-scoping phase and followed largely the approach developed for the pilot seminar at the Boreal, the Atlantic and Alpine region.

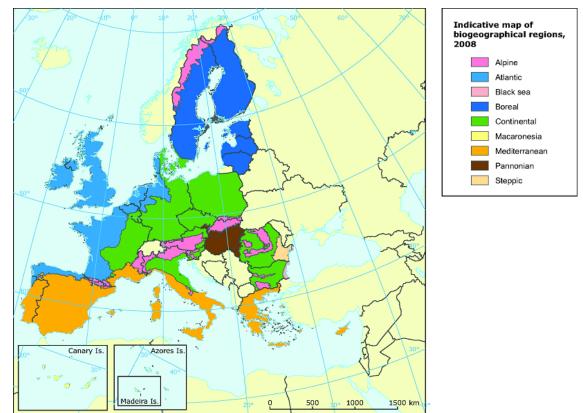
The 1st pre-scoping document described the methodology to rank the habitat types and species and provided some additional information based mainly on the Article 17 data. It covered both the Macaronesian and Mediterranean region.

The 2nd pre-scoping document covering only the Mediterranean region continues from the work of the 1st draft, adding results of the selection of the habitat types by the Steering Committee and other additional information using Article 17 data. The pre-scoping document will contribute to the preparation of the seminar background document which will be drafted by the Commission consultant.

How to use the information of the pre-scoping document?

The pre-scoping document includes the information that the ETC/BD has collated during the preparatory phase of the Mediterranean Natura 2000 seminar. It aims

1) at supporting the Member States, DG ENV and the involved stakeholders to make decisions on the habitat types and species to be covered in the Mediterranean seminar and


2) at giving some more detailed information using Article 17 and Natura 2000 data on those habitat types and species that the Steering Committee decided to select for discussion in the seminar. The latter is in the format of background information sheets in the chapter 5 of this document. This information will be included in the Seminar background document as well.

3) at promoting and addressing elements on how to use Article 17 and Natura 2000 data in the work towards improved conservation status. For example coverage of Natura 2000 network (N2K coverage) has been added to Appendix 1 to give indications on how big proportion of the habitat types is within the network – this is to help getting ideas whether the needs for actions are rather outside of the network or vice versa. The coverage proportion is given with simple symbols for all habitat types and species. In addition, a "positive trend" is included in the table as this could give ideas about "quick gains" (potential easy improvement of species/habitat status with management measures). This kind of information can potentially be used in later stages while working on the conservation measures.

Please note that Croatia who joined the EU on 1.7.2013 has not been included in the statistics presented below.

2. General information on the Mediterranean region

The European Union has nine biogeographical regions (map 1), each with its own characteristic blend of vegetation, climate and geology. Working at the biogeographical level makes it easier to discuss conservation of species and habitat types under similar natural conditions across a suite of countries, irrespective of political and administrative boundaries.

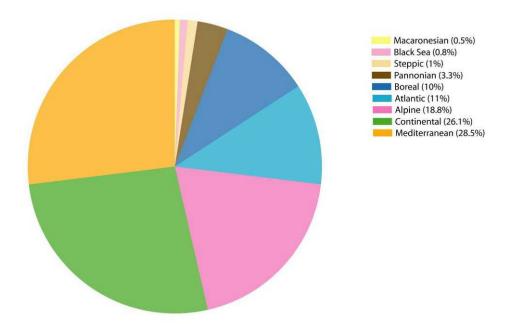

Map 1. The biogeographical regions of the European Union (EEA 2009).

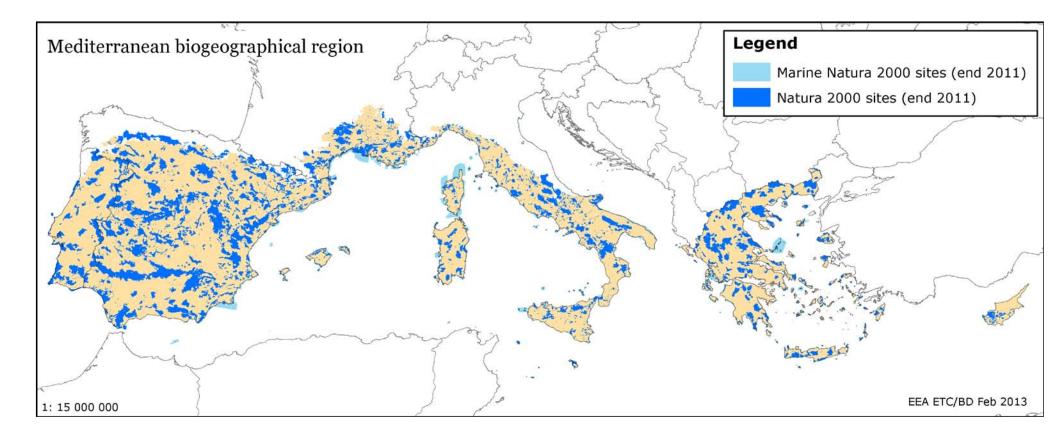
Table 1. Natura 2000 sites per biogeographical region

Biogeographical region	Area of Natura 2000 sites per Region (km²)	Number of sites
Alpine	143 515	1 908
Atlantic	83 068	3 667
Black sea	6285	57
Boreal	75 186	7534
Continental	198 784	9 678
Macaronesia	3 838	234
Mediterranean	217 196	3 987
Pannonian	25 206	895
Steppic	7 999	89

Source: Natura 2000 database, end 2011

Figure 1. Total area of Natura 2000 sites in nine biogeographical regions (Natura 2000 database, end 2011)

% of Natura 2000 sites per Biogeographical region


The Mediterranean biogeographical region

The Mediterranean biogeographical region covers all or part of 12 countries in the northern coast of the Mediterranean Sea of which nine are EU Member States: France, Croatia, Cyprus, Greece, Italy, Malta, Portugal, Spain and the United Kingdom. The biogeographical regions borders the Atlantic, Alpine and Continental regions.

- The Mediterranean biogeographical region and the Mediterranean Sea constitute a frontier zone between Europe, Asia and Africa in terms of climate and species
- The climate is warm with hot summers and mild winters. Arid and desert conditions are increasing and water will become more and more scarce
- · Soils are low in humus, and the erosion risk is great in most areas
- The number of indigenous species is still the highest in Europe, the wider Mediterranean area being one of the two hotspots for species in Europe
- There is also a high number of endemics as well as wild ancestors to cultivated plants
- The cultural influence on nature is the longest in Europe, but rural areas are increasingly being depopulated and abandonned
- More than 35 % of the tourists visits in Europe take place in the region, exerting heavy pressure on land and coasts, water and nature resources
- Formerly widespread dry grasslands and traditional agro-forestry with dehesa and montados are decreasing, the areas turned to intensive agriculture or abandonned to scrub formation
- The intensive agriculture, vegetable growing and the large citrus orchards require intensive irrigation
- The region is the olive oil, fruit and nut production region of Europe
- Though there is only around 25% forest cover trees are a dominant feature in the landscape (incl. orchards, olive groves etc.)
- Oaks are important, natural old forests are scarce
- Sclerophyllous (evergreen) trees, shrubs and dwarfshrubs are characteristic, many with aromatic oil contents
- There are few lakes and bogs, the area covered by mires is reduced
- However, some of Europe's most important wetlands for birds migrating between Europe and Africa are found both in eastern and western parts
- Wolf and wildcat have spread, but the Iberian lynx is close to extinction

Source: EEA (2003) Europe's biodiversity – biogeographical regions and seas. Biogeographical regions in Europe.

Map 2. Natura 2000 sites across the Mediterranean region

NB the map shows the situation before Croatia joined the EU. The map shows all Mediterranean terrestrial sites and marine Mediterranean sites except sites in Northern Adriatic. Marine sites in the Spanish and Portuguese Marine Atlantic are not shown either.

For further information on the Mediterranean region, please see:

• European Commission (2005) *Natura 2000 in the Mediterranean region* (characteristics of the region, number of Annex I habitat types and Annex II species compared to other biogeographical regions etc)

http://ec.europa.eu/environment/nature/info/pubs/docs/biogeos/Mediterranean.pdf

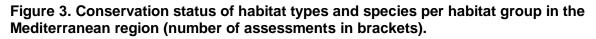
EEA (2003) Europe's biodiversity – biogeographical regions and seas. Biogeographical regions in Europe. The Mediterranean region – long influence from cultivation, high pressure from tourists, species rich, warm and drying.
 http://www.eea.europa.eu/publications/report 2002 0524 154909

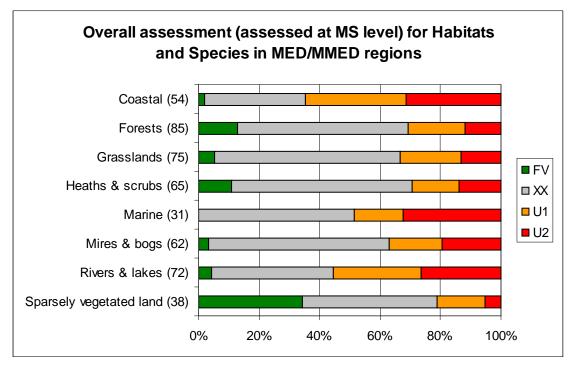
General:

Natura 2000 Barometer provides figures for the global Natura 2000 sites (SPAs+ SCIs) which have been obtained by GIS analysis, using the electronic spatial boundaries provided by Member States for each of their sites. It is regularly updated in Natura 2000 Newsletter: http://ec.europa.eu/environment/nature/info/pubs/natura2000 Newsletter:

3. The Article 17 (conservation status) reporting

All Member States are required by the Habitats Directive to monitor habitat types and species of Community interest. Article 17 of the Directive requires that every 6 years Member States prepare reports to be sent to the European Commission on the implementation of the Directive. The Article 17 report for the period 2001-2006 is the first reporting period that includes assessments on the conservation status of the habitat types and species of Community interest. The Article 17 reports (http://bd.eionet.europa.eu/article17) cover the habitat types and species across the whole territory of the Member State concerned, not only within Natura 2000 sites.


The Article 17 reports prepared by the Member States have three sections; (i) general information about the implementation of the Habitats Directive, (ii) the assessments of conservation status of species and (iii) for habitats. Conservation status was assessed using a standard methodology to facilitate comparisons between Member States and to allow aggregation to give assessments for biogeographical regions. Conservation status is assessed as being either 'favourable' (FV), 'unfavourable-inadequate' (U1) and 'unfavourable-bad' (U2), based on four parameters as defined in Article 1 of the Directive.


The parameters for habitat types are 'range', 'area covered by the habitat type', 'structure and functions' and 'future prospects' and for species they are 'range', 'population', 'habitat of species' and 'future prospects'. Member States were encouraged to use expert opinions where there was insufficient data to inform judgements. However, where there was great uncertainty it was also possible to report the conservation status as 'unknown'. The assessments of the four parameters were combined following an agreed method to give an overall assessment of conservation status. The conservation status is assessed separately for each of the biogeographical region occurring in a Member State.

The current reporting period covers the period of 2007-2012. Lessons from the first assessment period have been learnt and taken into account as much as possible and a revised reporting format and guidance document were made available in 2011. The harmonisation process will continue after 2013.

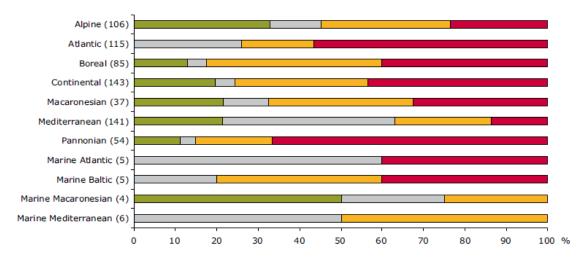

Conservation status of habitat types and species per habitat group in the Mediterranean region

Figure 3 shows the percentages of overall assessments of habitat types and species in each class for habitat groups in the Mediterranean region (see more about the habitat groups on page 16). The number in brackets shows the number of assessments in each group. The statistics are based on the Member State level biogeographical assessments of conservation status. All habitat types and Annex II and IV species are used in the graph. More details on listing habitats and species in habitats groups can be found in the Appendix 1. Some of the habitats or species can be listed in two habitat groups.

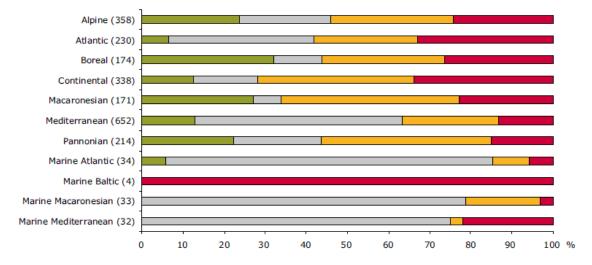

To compare the conservation status of the habitat types and species between different biogeographical and marine regions, please see the Figure 4 and 5 (taken from the EEA Technical report on EU 2010 Biodiversity Baseline).

Figure 4. Conservation status of habitat types per biogeographical and marine region.

The proportion of the habitats assessed as 'unfavourable — bad' exceeds 40 % in most of the biogeographical and marine regions.
 The proportion of the habitats assessed as 'unfavourable' is more than 70 % in most of the terrestrial biogeographical regions.
 In the Atlantic and Pannonian biogeographical regions, more than 50 % of the habitats are assessed as 'unfavourable — bad'; this percentage slightly exceeds the percentage in the other biogeographical regions.

Note: Geographical coverage: EU except Bulgaria and Romania; number of assessments in brackets. Source: ETC/BD, 2008.

Figure 5. Conservation status of species per biogeographical and marine region.

The proportion of species assessed as 'unfavourable — bad' exceeds 20 % in most of the biogeographical regions. However, the highest percentage of 'unfavourable-bad' assessments is in the Continental and Atlantic regions. The proportion of 'favourable' assessments exceeds 20 % in the Alpine, Boreal, Macaronesian and Pannonian regions. The proportion of 'unknown' assessments is overwhelming in most of the marine regions indicating that gaps in knowledge are in general much higher for the marine environment than for the terrestrial environment.

Note: Geographical coverage: EU except Bulgaria and Romania; number of assessments in brackets.

Source: ETC/BD, 2008.

4. Identifying habitat types & species for the Mediterranean Seminar – preparatory work

This chapter summarises the work provided by the ETC/BD to help the Steering Committee in narrowing down the selection of habitat types and species during the preparatory stage of the Mediterranean (and Macaronesian) Natura 2000 Seminar. The methodology and ranking of species and habitat types is described below and was introduced to the Steering Committee on 21.2.2013.

4.1 Data and method used for the analysis & ranking of species

and habitat types and habitat groups

4.1.1 Data used

One of the aims of the new process of the Natura 2000 seminars at biogeographical level is to assess and discuss how the management of the Natura 2000 network can best contribute to the improvement of the conservation status of the targeted species and habitat types (and status of birds). This is why the main source of information for the identification of the criteria is the Article 17 reports (<u>http://bd.eionet.europa.eu/article17</u>) (see also chapter 3). In addition, there are practical reasons for this choice: this information is easily accessible and it is the most recent data at the European level (covering period 2001-2006, EU25 species listed in the Annex II, IV and V and habitat types of Annex I of the Habitats Directive). Bird species are not covered in the ETC/BD analysis, but birds are part of the Natura 2000 seminars.

The Article 17 data from the Member State level were used in this proposal as the potential measures deriving from this process would be taken at the national level. The Article 17 data quality issues are not repeated here as they are discussed in details in the Article 17 Technical report http://bd.eionet.europa.eu/article17/chapter2.

4.1.2 Methods used

For all calculations concerning the species and habitat types listed in the Annex I, II and IV of the Habitats Directive, the Article 17 reporting data of 2001-2006 were used. Annex V species were excluded following the approach of the Pilot Boreal, Atlantic and Alpine processes. In addition, species and habitat types occurring only in one Member States were excluded from the Mediterranean calculations (following the same approach as in the Atlantic and Alpine seminar process).

In total 119 Annex I habitat types and 223 Annex II/IV species of the Mediterranean region were covered in this analysis. This covers 53 plant species.

Criteria for prioritisation (Criterion A, B and C)

Given the need to focus on a limited number of issues in the seminar the priority for discussions of habitat types and species was assessed and ranked. Identifying priorities should reflect on one side the conservation 'urgency/priority' (unfavourable conservation status and declining trends) and on the other side joint interest of all Member States involved in the seminar (the priority should be given to habitat types and species which occur in most of the countries in the region).

The following criteria based on the Article 17 reporting are proposed to be used for the first step to narrow down the selection of species and habitat types (criteria for prioritisation). There are three criteria A, B and C. This work was developed for the Pilot Seminar.

Criterion A. Number of MS where species/habitat types are present

The proposal is to give a higher weight to species and habitat types which occur in several Member States. Habitat types and species only occurring in one Member State of the Mediterranean region or habitat type and species that just have some outliers in the region from e.g. the Continental region are less important to discuss in such a setting than the habitat types and species that are shared by many Member States in the Mediterranean region and with their main distribution there. As explained above, species and habitat types occurring in one Mediterranean Member State only were left out from the analysis.

If for example a species in Mediterranean region is only present in two Member State it scored only 2 points, but if it is present in all eight Mediterranean Member States it scored 8 points. Criterion A has a multiplier effect as shown below under the paragraph 'Filtering the species and habitat types based on criteria A, B and C.

Criterion B. Species and habitat types at unfavourable conservation status (U2 & U1 & XX)

The terms of reference for the biogeographical seminars excludes from the discussion species and habitats already at favourable conservation status. This is why species and habitats with favourable conservation status were not taken into account under criterion B. Species and habitats were allocated a score based on their conservation status in each Member State in the following way:

The habitat/species scores

- 2 points for each Member State in which it has been assessed as Unfavourable-Bad (U2) and
- 1 point if Unfavourable-Inadequate (U1) or Unknown (XX).

and these scores summed up give the overall score.

For example the Coastal lagoon 1150 in Mediterranean region was assessed as follows

 $B = 2(N^{\circ}U2) + N^{\circ}U1 + N^{\circ}XX = 3^{*}2 + 2^{*}1 + 1^{*}1 = 9$

- B = score for criterion B
- N°U2, N°U1, N°XX = number of Member States with the conclusion U2, U1, XX.

Member State	Article 17 evaluation	Score
CY	U1	1
EL	U2	2
ES	XX	1
FR	U2	2
IT	FV	-
MT	U1	1

Member State	Article 17 evaluation	Score
PT	U2	2
Overall score		9

This criterion reflects the importance to agree on management for habitat types and species that are far from being at favourable conservation status compared to those ones which are close to favourable status. The higher is the number of Member States with unfavourable conclusions the higher the score. This method works with absolute numbers, it is not sensitive to the percentage of the habitat area or species population having an unfavourable status. For example if the conclusion in two out of eight Member States is U2 the species has 4 points (considering it is favourable in remaining 5 MS). But the species scores 4 points also if the species occur only in two Member States and both have reported U2 conservation status.

On the other hand the score is dependent on the number of Member States where the habitat/or species occurs. The habitats/species present in several Member States have higher probability to get high scores.

Criterion C. Trend information

All species and habitat types that were reported as having a negative trend in the Article 17 reports were taken into account using the following parameters:

Feature	Trend
Species	"Population"
	"Habitat for the species"
Habitat types	"Area of the habitat type"
	Qualifier for "Structure & functions"

Ideally, the qualifier information (U1-, U2-) could have been used under the parameter "Structure and functions", however as qualifiers were not used systematically in the Art 17 reports of 2001-2006, it was not used under this criteria for the analysis of the Mediterranean region.

For these parameters each negative trend information (scoring 1) was counted per species or habitat type.

If both parameters for a species were negative in eight Member States, the score would be 16 points.

$$C = N^{\circ}$$
 trend1 + N^o trend2

- C = score for criterion C
- N° trend1, N° trend2 = number of Member States where the trend1, trend2 is negative

NB: For the Boreal region (Pilot seminar) the qualifier information for structure and functions (U1-, U2-) was used to support this criterion as this information was available from the Boreal Member States. Information on structure and function is closely linked to potential management needs, so its use can be justified in this context.

It is expected that in the current reporting round the Member States will use the qualifier in a more systematic way, thus the information could be used for the future seminars.

Filtering the species and habitat types based on criteria A, B and C and use of the Priority Index

After the scores were given to each habitat type and species according to the criteria A, B and C, the scores were then used to calculate a Priority Index for each species and habitat type. The algorithm for calculation should be understandable and simple and the Steering Committees for the Boreal, Atlantic and Alpine regions agreed to use the sum of scores for unfavourable conservation status and negative trend multiplied by the number of countries where habitat/species is present: $A^*(B+C)$.

The other options for the algorithm are described in the draft pre-scoping document for the Boreal region by the ETC/BD:

https://circabc.europa.eu/w/browse/b9886a98-1fe2-40f1-a759-053c62748d6c

Criteria for clustering habitats and species

The first discussions in 2011 on the new Natura 2000 seminars at biogeographical level identified a need to cluster the habitats and species into broader ecosystems. The original clustering of habitat types and species developed by the EEA and the ETC/BD for the EU 2010 Biodiversity Baseline¹ has been used as a basis to group species and habitat types under broad habitat groups for the Boreal, Atlantic and Alpine seminar processes as this was the most recent available grouping covering all Member States and relatively easy to be adjusted for the purposes of these seminars.

In this earlier background work all species and habitat types were allocated to at least one of the thirteen habitat groups (forests, freshwater, wetlands, grasslands, agro-ecosystems, rocks etc). The ETC adjusted the habitat groups to better reflect the ecological conditions of each region (see e.g. the pre-scoping document for the Atlantic region https://circabc.europa.eu/w/browse/b9886a98-1fe2-40f1-a759-053c62748d6c).

However, the on-going MAES² process is working on the new typology of ecosystems for mapping and assessment and the ETC/BD started taking this into account in the work for the Mediterranean region (in practise no major differences to the work done so far for the other biogeographical regions). See the table below.

MAES typo	ogy of ecosystems	
Major ecosystem category (level 1)	Ecosystem type for mapping & assessment (level 2)	Habitat –group used in pre-scoping work by ETC/BD
	Urban	-
	Cropland	-
	Grassland	Yes
	Woodland and forest	Yes, but we call it 'Forests'
Terrestrial	Heathland and scrub	Yes, but we call it 'Heaths & scrubs'
	Sparsely vegetated land	Yes (means rock and ice)
	Inland wetlands	Yes, but we call it 'Mires and bogs'
	Coastal	Yes, although MAES work not completed yet
Freshwater	Rivers and lakes	Yes
Marine		Yes, although MAES work not completed yet

For the ETC/BD analysis the habitat types and species from Art 17 data were clustered under only one habitat group wherever possible and limited to maximum of two habitat groups³ and Annex V species were excluded (as for the other biogeographical regions).

¹The EU 2010 Biodiversity Baseline provides facts and figures on the state and trends of the different biodiversityand ecosystem components and supports the EU in developing the post-2010 sub-targets and provides factual data for measuring and monitoring progress in the EU from 2011 to 2020 (http://www.eea.europa.eu/publications/eu-2010-biodiversity-baseline)

² Mapping and Assessment of Ecosystems and their Services.

³ Please notice that some Annex II/IV species may be missing under relevant habitat group, but normally Member States should be able to pick them up during the process, at latest when habitats and species are selected under discussion.

NB: For some species e.g. bats the clustering may be too narrow, because breeding, foraging, resting and wintering habitat can cover more than two habitats.

As a result, the ETC/BD proposed to use eight habitat groups and habitat types and species were attributed to these groups using Article 17 checklist and ETC/BD expert opinion:

Forests, Grasslands, Coastal, Heaths & scrubs, Lakes and rivers, Mires & bogs, Sparsely vegetated land and Marine

Using the Priority Index to rank habitat groups

To finalise the ranking of different habitat groups, for each group of habitat type and species the cumulative Priority Index was calculated by summing up the index of each habitat and species and then divided it with the number of habitats and species in the group.

We can use the 'Rivers and lakes' group in table 2 as an example for how the Priority Index was calculated. First we used the algorithm A*(B + C). Each species and habitat types linked to 'Rivers and lakes' got a figure (index) by using this agreed formula. The figures were summed up and divided by the number of species/habitats of listed under 'Rivers and lakes' giving the cumulative Priority Index 7 for this habitat group.

4.2. Results

Ranking of the habitats and species under eight habitat groups

Ranking of the eight habitat groups is shown in table 2. The results of this analysis give marine and coastal habitat groups highest scores suggesting that these habitat groups (their habitat types and species) require particular attention in the Mediterranean region.

Table 2. The cumulative priority index in MED region using A*(B+C) and the ranking (excluding Annex I habitat types and Annex II & IV species occurring only in one MS, covers 223 species and 119 habitat types).

Habitat group	Number of species and habitat types	A*(B+C)
Marine	31	38,03
Coastal	54	33,11
Forests	85	21,35
Mires & bogs	62	19,89
Grasslands	75	19,79
Heaths & scrubs	65	16,92
Rivers & lakes	72	16,61
Sparsely vegetated land	38	9,66

Ranking of the habitats and species

Given the need to focus on a limited number of issues in the Natura 2000 seminar, we have used the algorithm $A^*(B+C)$ where A = number of MS, B = unfavourable conservation status and C = negative trend, to calculate a Priority Index for each habitat types and species following the steps as described above. We ranked the top 23 habitat types (habitat types with the highest Priority Index) for the Mediterranean region (see below table 3. For legend see Appendix 1).

Table 3. Top 23 habitat types of the Mediterranean region (some habitat types have
same score).

N2K code	Description	Prio	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
2110	Embryonic shifting dunes	N	U2	0	•••	7	10	5	105
1150	Coastal lagoons	Y	U2	0	•••	7	9	4	91
1310	Salicornia and other annuals colonizing mud and sand	Ν	U2	0	•••	7	8	4	84
1410	Mediterranean salt meadows (Juncetalia maritimi)	Ν	XX	1	•••	7	8	3	77
2230	Malcolmietalia dune grasslands	Ν	U1	1	•••	7	8	3	77
1420	Mediterranean and thermo- Atlantic halophilous scrubs (Sarcocornetea fruticosi)	Ν	xx	0	•••	7	8	3	77
1210	Annual vegetation of drift lines	Ν	U1	0	•••	7	8	3	77
9320	Olea and Ceratonia forests	Ν	U1	1	•	8	6	3	72
92A0	Salix alba and Populus alba galleries	Ν	XX	0	•••	7	7	3	70
3170	Mediterranean temporary ponds	Y	XX	0	••	7	6	3	63
1110	Sandbanks which are slightly covered by sea water all the time	N	xx	0	•••	7	8	1	63
1510	Mediterranean salt steppes (Limonietalia)	Y	XX	0	•••	6	7	3	60
2260	Cisto-Lavenduletalia dune sclerophyllous scrubs	Ν	ХХ	0	•	6	7	3	60
92D0	Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae)	Ν	xx	0	•••	7	6	2	56
2250	Coastal dunes with Juniperus spp.	Y	U1	0	•••	6	6	3	54
2120	Shifting dunes along the shoreline with Ammophila arenaria ("white dunes")	N	U2	0	•••	5	7	3	50
1130	Estuaries	Ν	XX	0	•••	5	7	3	50
1120	Posidonia beds (Posidonion oceanicae)	Y	U1	1	••	7	6	1	49
2190	Humid dune slacks	Ν	U2	0	••	6	5	3	48
3140	Hard oligo-mesotrophic waters with benthic vegetation of Chara spp.	Ν	U1	0	•••	7	5	1	42
1170	Reefs	Ν	U1	0	•••	7	5	1	42

8330	Submerged or partially submerged sea caves	N	U1	0	•••	7	5	1	42
9540	Mediterranean pine forests with endemic Mesogean pines	N	XX	0	•	6	5	2	42

Final selection

The Member States and stakeholders were given an opportunity to propose their selection of 20 habitat types (at least 15 of these habitats had to be drawn from the 23 habitats identified in the table 5 (Top 23 habitat types) and up to five additional habitats that were not in the table 5, but in the table of Appendix 1). The Steering Committee discussed the outcome of the selection of the habitat types on 24.4.2013 and the final selection included 23 habitat types as listed below. 'NEW' in the table means that the habitat type was proposed by Member States and/or stakeholders in addition to the Top 23 habitat types.

For Member States' proposal for species selection, see the document provided by the EC consultant (available on CIRCABDC).

Code	Habitat
1120	Posidonia beds (Posidonion oceanicae)
1110	Sandbanks which are slightly covered by sea water all the time
1150	Coastal lagoons
1170	Reefs
1310	Salicornia and other annuals colonizing mud and sand
1410	Mediterranean salt meadows (Juncetalia maritimi)
1420	Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi)
2110	Embryonic shifting dunes
2230	Malcolmietalia dune grasslands
2250	Coastal dunes with Juniperus spp.

Coastal habitats: 10 habitats

Forest habitats: 5 habitats

Code	Habitat
9320	Olea and Ceratonia forests
9260	Castanea sativa woods (NEW)
9540	Mediterranean pine forests with endemic Mesogean pines
9330	Quercus suber forests (NEW)
9340	Quercus ilex and Quercus rotundifolia forests (NEW)

Freshwater habitats: 4 habitats

Code	Habitat
92A0	Salix alba and Populus alba galleries
92D0	Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae)
3290	Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion (NEW)
3170	Mediterranean temporary ponds

Grassland, Heaths & Scrubs: 4 habitats

Code	Habitat
6210	Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco- Brometalia) (important orchid sites) (NEW)
6220	Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea
5330	Thermo-Mediterranean and pre-desert scrub
6310	Dehesas with evergreen Quercus spp (NEW)

5. Background information sheets for selected 23 habitat types

More information is provided for the selected habitat types in the background information sheets. Each of the selected habitat types has an information sheet including also information on the associated species (using Art 17 data).

A background information sheet for each habitat type includes

- the description of each habitat type as in the EU Interpretation Manual of 2007⁴,
- web link to summary sheets with conservation status information both at EU level and Member State level (this means information available in the summary sheets produced in 2008⁵)
- estimation on the Natura 2000 coverage,
- number of SCIs and habitat area in hectares within the SCIs for the habitat type⁶ and
- a map with SCIs and Article 17 distribution area of the habitat type in the Mediterranean region. The maps include information from D sites as well.
- For those habitat types which occur/may occur in Croatia, '0' or '?' have been added to the tables of *Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region.* '0' = occurs in Croatia⁷ but Natura 2000 database for Croatia is not yet available, '?' = occurrence possible but not confirmed.

Some specific issues on the data used in the background information sheets

Statistics on the number of SCIs and habitat area (ha) within SCIs per Member State:

The latest version of the Natura 2000 database (version 2012) was used for the calculation of the number of SCI's and the habitat area for each Member State. However, this was not possible for Cyprus, Portugal and Greece (no area provided for habitats) and therefore data from 2011 had to be used.

Slovenia: only one habitat, 1120 (reported in CON in the Natura 2000 database, no information on marine part) is reported for Slovenia both in the Natura 2000 database and in the Art 17 2001-2006 reporting round. Data were taken from 2011 Natura 2000 database.

(Some Member States in the Mediterranean region have insufficiencies in the designation of SCIs, particularly for marine habitat types but this is not recorded here).

Statistics on Natura 2000 coverage:

⁴<u>http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf</u>

⁵ Online report on Article 17 of the Habitats Directive: conservation status of habitats & species of Community interest (2001-2006)

⁶The habitat area is calculated bit differently compared to the calculations for the Natura coverage, thus the habitat area in hectares given in tables of the chapter 5 should be considered as a minimum area.

⁷ Based on Topić, J. & Vukelić, J. (2009) *Priručnik za određivanje kopnenih staništa u Hrvatskoj prema Direktivi o staništima EU* Državnog zavoda za zaštitu prirode, Zagreb. & Bakran-Petricioli, T (2011) *Priručnik za određivanje morskih staništa u Hrvatskoj prema Direktivi o staništima EU*. Državnog zavoda za zaštitu prirode, Zagreb.

The use of the new data (2012) has a slight impact on the results provided in this prescoping document, namely on the calculation of the Natura 2000 coverage. However, in practice for the 23 selected habitats, only 4 habitats are concerned compared to the draft pre-scoping document dated April 2013 (the table below shows the cases where there is a difference between the previous and current document). The latest information has been used for the calculations for the background information sheets. See Appendix 1 for the symbols '*' etc and Appendix 2 for the method used.

Habitat code	Natura 2000 coverage (data from 2011)	Natura 2000 coverage (data from 2012)
9260	***	*
9320	*	**
9330	***	**
9340	**	*

Mediterranean pre-scoping document

N2K code	Priority	Habitat type
1110		Sandbanks which are slightly covered by sea water all the time
1120	*	Posidonia beds (Posidonion oceanicae)
1150	*	Coastal lagoons
1170		Reefs
1310		Salicornia and other annuals colonising mud and sand
1410		Mediterranean salt meadows (Juncetalia maritimi)
1420		Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi)
2110		Embryonic shifting dunes
2230		Malcolmietalia dune grasslands
2250	*	Coastal dunes with Juniperus spp.
3170	*	Mediterranean temporary ponds
3290		Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion
5330		Thermo-Mediterranean and pre-desert scrub
6210		Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites)
6220	*	Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea
6310		Dehesas with evergreen Quercus spp.
9260		Castanea sativa woods
92A0		Salix alba and Populus alba galleries
92D0		Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae)
9320		Olea and Ceratonia forests
9330		Quercus suber forests
9340		Quercus ilex and Quercus rotundifolia forests
9540		Mediterranean pine forests with endemic Mesogean pines

Sandbanks which are slightly covered by sea water all the time (1110)

Habitats Manual 2007 (only the most relevant part taken) :

Sandbanks are elevated, elongated, rounded or irregular topographic features, permanently submerged and predominantly surrounded by deeper water. They consist mainly of sandy sediments, but larger grain sizes, including boulders and cobbles, or smaller grain sizes including mud may also be present on a sandbank. Banks where sandy sediments occur in a layer over hard substrata are classed as sandbanks if the associated biota are dependent on the sand rather than on the underlying hard substrata.

"Slightly covered by sea water all the time" means that above a sandbank the water depth is seldom more than 20 m below chart datum. Sandbanks can, however, extend beneath 20 m below chart datum. It can, therefore, be appropriate to include in designations such areas where they are part of the feature and host its biological assemblages.

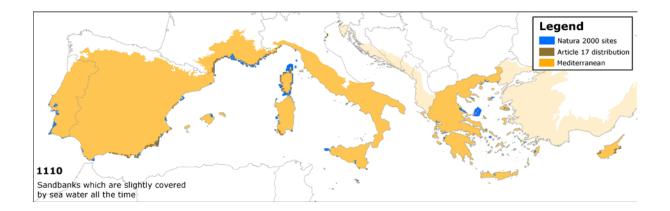
Sandbanks can be found in association with mudflats and sandflats not covered by seawater at low tide (1140), with Posidonia beds (1120) and reefs (1170). Sandbanks may also be a component part of habitat 1130 Estuaries and habitat 1160 Large shallow inlets and bays.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats/coastal_art17report/library/datasheets/habitats/coastal_habitats/coastal_habitats/coastal_habitats/coastal_habitats/coastal_habitats/2011/110-sandbanks%20slightly%20covered%20by%20sea%20water%20all%20time.pdf

Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.


editerranear			· · ·					
CY	ES	FR	GR	HR	IT	MT	PT*	SI

Number of SCIs and habitat area (ha) within SCIs per Member State in the

	CY	ES	FR	GR	HR	IT	MT	PT*	SI
Number of sites	2	35	29	44	0	59	3	9	
Habitat area (ha)	90	6031	48946	19321	0	15170	89	5133	

*not assessed in MED/MMED in the Art17

Map of SCIs proposed for Sandbanks which are slightly covered by sea water all the time & Article 17 distribution

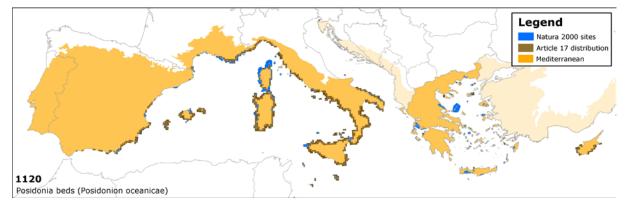
Posidonia beds (Posidonion oceanicae) (1120)

Habitats Manual 2007 (only the most relevant part taken) :

Beds of *Posidonia oceanica* (Linnaeus) Delile characteristic of the infralittoral zone of the Mediterranean (depth: ranging from a few dozen centimetres to 30 - 40 metres). On hard or soft substrate, these beds constitute one of the main climax communities. They can withstand relatively large variations in temperature and water movement, but are sensitive to desalination, generally requiring a salinity of between 36 and 39‰.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitats</u> <u>art17report/library/datasheets/habitats/coastal_habitats/coastal_habitats/1120-</u> <u>posidonia_oceanicae/download/1/1120-</u> Posidonia%20beds%20%28Posidonion%20oceanicae%29.pdf


Other information

According to the ETC/BD calculations 51-75% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	SI
Number of sites	5	77	30	73	0	170	5	1
Habitat area (ha)	2238	74626	86994	60587	0	150711	5282	6

Map of SCIs proposed for *Posidonia* beds (*Posidonion oceanicae*) & Article 17 distribution

Coastal lagoons (1150)

Habitats Manual 2007 (only the most relevant part taken) :

Lagoons are expanses of shallow coastal salt water, of varying salinity and water volume, wholly or partially separated from the sea by sand banks or shingle, or, less frequently, by rocks. Salinity may vary from brackish water to hypersalinity depending on rainfall, evaporation and through the addition of fresh seawater from storms, temporary flooding of the sea in winter or tidal exchange. With or without vegetation from *Ruppietea maritimae*, *Potametea*, *Zosteretea* or *Charetea* (CORINE 91: 23.21 or 23.22).

- Flads and gloes, considered a Baltic variety of lagoons, are small, usually shallow, more or less delimited water bodies still connected to the sea or have been cut off from the sea very recently by land upheaval. Characterised by well-developed reedbeds and luxuriant submerged vegetation and having several morphological and botanical development stages in the process whereby sea becomes land.
- Salt basins and salt ponds may also be considered as lagoons, providing they had their origin on a transformed natural old lagoon or on a saltmarsh, and are characterised by a minor impact from exploitation.

Saltmarshes form part of this complex.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitats</u>_art17report/library/datasheets/habitats/coastal_habitats/coastal_habitats/1150-coastal_lagoonspdf/download/1/1150-Coastal%20lagoons.pdf

Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	1	46	28	35	0	83	4	8
Habitat area (ha)	577	27005	48945	38865	0	32095	8	2159

Reefs (1170)

Habitats Manual 2007 (only the most relevant part taken) :

Reefs can be either biogenic concretions or of geogenic origin. They are hard compact substrata on solid and soft bottoms, which arise from the sea floor in the sublittoral and littoral zone. Reefs may support a zonation of benthic communities of algae and animal species as well as concretions and corallogenic concretions.

- Clarifications:
- "Hard compact substrata" are: rocks (including soft rock, e.g. chalk), boulders and cobbles (generally >64 mm in diameter).
- "Biogenic concretions" are defined as: concretions, encrustations, corallogenic concretions and bivalve mussel beds originating from dead or living animals, i.e. biogenic hard bottoms which supply habitats for epibiotic species.
- "Geogenic origin" means: reefs formed by non biogenic substrata.
- "Arise from the sea floor" means: the reef is topographically distinct from the surrounding seafloor.
- "Sublittoral and littoral zone" means: the reefs may extend from the sublittoral uninterrupted into the intertidal (littoral) zone or may only occur in the sublittoral zone, including deep water areas such as the bathyal.
- Such hard substrata that are covered by a thin and mobile veneer of sediment are classed as reefs if the associated biota are dependent on the hard substratum rather than the overlying sediment.
- Where an uninterrupted zonation of sublittoral and littoral communities exist, the integrity of the ecological unit should be respected in the selection of sites.
- A variety of subtidal topographic features are included in this habitat complex such as: Hydrothermal vent habitats, sea mounts, vertical rock walls, horizontal ledges, overhangs, pinnacles, gullies, ridges, sloping or flat bed rock, broken rock and boulder and cobble fields.

Reefs can be found in association with "vegetated sea cliffs" (habitats 1230, 1240 and 1250) "sandbanks which are covered by sea water all the time" (1110) and "sea caves" (habitat 8830). Reefs may also be a component part of habitat 1130 "estuaries" and habitat 1160 "large shallow inlets and bays".

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitats</u>_art17report/library/datasheets/habitats/coastal_habitats/coastal_habitats/1170reefspdf/download/1/1170-Reefs.pdf

Other information


According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES*	FR	GR	CR	IT	МТ	PT*	SI	UK
Number of sites	5	18	23	72	0	137	7	5		1
Habitat area (ha)	1830	26241	23543	17358	0	21113	433	1321		576

*not assessed in MED/MMED in the Art17

Map of SCIs proposed for Reefs & Article 17 distribution

Salicornia and other annuals colonising mud and sand (1310)

Habitats Manual 2007 (only the most relevant part taken) :

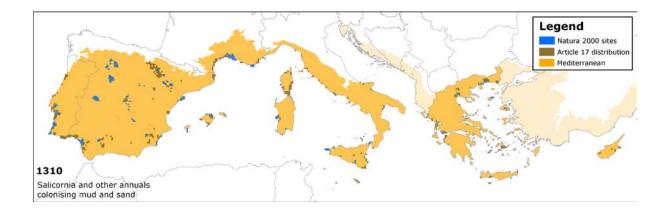
Formations composed mostly or predominantly of annuals, in particular Chenopodiaceae of the genus *Salicornia* or grasses, colonising periodically inundated muds and sands of marine or interior salt marshes. *Thero-Salicornietea*, *Frankenietea pulverulentae*, *Saginetea maritimae*.

Sub-types

- 15.11 Glasswort swards (*Thero-Salicornietalia*): annual glasswort (*Salicornia* spp., *Microcnemum coralloides*), seablite (*Suaeda maritima*), or sometimes salwort (*Salsola* spp.) formations colonising periodically inundated muds of coastal saltmarshes and inland salt-basins.
- 15.12 Mediterranean halo-nitrophilous pioneer communities (*Frankenion pulverulentae*): formations of halo-nitrophilous annuals (*Frankenia pulverulenta, Suaeda splendens, Salsola soda, Cressa cretica, Parapholis incurva, P. strigosa, Hordeum marinum, Sphenopus divaricatus*) colonising salt muds of the Mediterranean region, susceptible to temporary inundation and extreme drying;
- 15.13 Atlantic sea-pearlwort communities (*Saginion maritimae*): formations of annual pioneers occupying sands subject to variable salinity and humidity, on the coasts, in dune systems and saltmarshes. They are usually limited to small areas and best developed in the zone of contact between dune and saltmarsh.
- 15.14 Central Eurasian crypsoid communities : Sparse solonchak formations of annual grasses of genus *Crypsis* (*Heleochloa*) colonizing drying muds of humid depressions of the salt steppes and saltmarshes (15.A) of Eurasia, from Pannonia to the Far East.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats-art17report/library/datasheets/habitats/coastal_habitats/coastal_habitats/coastal_habitats/1310-salicornia%20and%20other%20annuals%20colonizing%20mud%20and%20sand.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	4	74	22	38	0	77	2	8
Habitat area (ha)	241	5292	2646	4429	0	4627		3543

Map of SCIs proposed for *Salicornia* and other annuals colonising mud and sand & Article 17 distribution

Mediterranean salt meadows (Juncetalia maritimi) (1410)

Habitats Manual 2007 (only the most relevant part taken) :

Various Mediterranean and western Pontic (Black Sea) communities of the *Juncetalia maritimi*. The different associations are described under point 2) with their characteristic plant species.

Sub-types :

- 15.51 tall rush saltmarshes dominated by Juncus maritimus and/or J. acutus
- 15.52 short rush, sedge and clover saltmarshes (*Juncion maritimi*) and humid meadows behind the littoral, rich in annual plant species and in *Fabacea* (*Trifolion squamosi*)
- 15.53 mediterranean halo-psammophile meadows (Plantaginion crassifoliae)
- 15.54 Iberian salt meadows (Puccinellion fasciculatae)
- 15.55 halophilous marshes along the coast and the coastal lagoons (*Puccinellion festuciformis*)
- 15.57 humid halophilous moors with the shrubby stratum dominated by Artemisia coerulescens (Agropyro-Artemision coerulescentis).
- Cyprus subtypes Halophytic vegetation periodically inundated by saline or bracking water

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats/castal_habitats/coastal_habitats/coastal_habitats/1410- mediterranean/download/1/1410-Mediterranean%20salt%20meadows%20%28Juncetalia%20maritimi%29.pdf

Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	5	127	39	53	0	115	6	8
Habitat area (ha)	19	14186	8962	8249	0	5643	15	4719

Map of SCIs proposed for Mediterranean salt meadows (*Juncetalia maritimi*) & Article 17 distribution

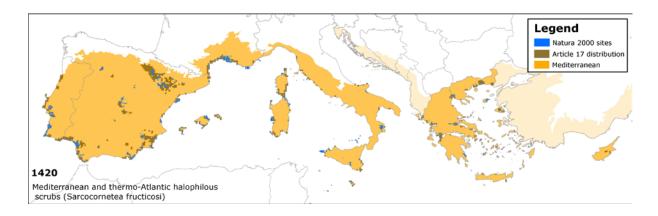
Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) (1420)

Habitats Manual 2007 (only the most relevant part taken) :

Perennial vegetation of marine saline muds (schorre) mainly composed of scrub, essentially with a Mediterranean-Atlantic distribution (*Salicornia, Limonium vulgare, Suaeda* and *Atriplex* communities) and belonging to the *Sarcocornetea fruticosi* class.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats/coastal_habitats/coastal_habitats/coastal_habitats/coastal_habitats/coastal_habitats/1420-mediterranean%20and%20thermo-Atlantic%20halophilous%20scrubs.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	MT	PT
Number of sites	2	129	35	35	0	89	9	7
Habitat area (ha)	358	24809	16428	18122	0	4039	6	7753

Map of SCIs proposed for Mediterranean and thermo-Atlantic halophilous scrubs (*Sarcocornetea fruticosi*) & Article 17 distribution

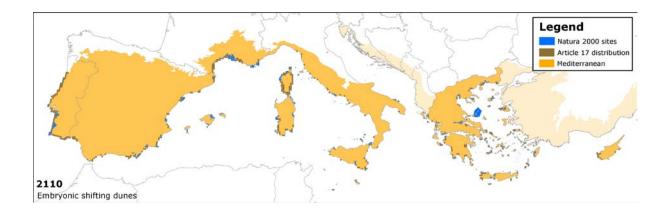
Embryonic shifting dunes (2110)

Habitats Manual 2007 (only the most relevant part taken) :

Formations of the coast representing the first stages of dune construction, constituted by ripples or raised sand surfaces of the upper beach or by a seaward fringe at the foot of the tall dunes.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/dunes_habitats/dunes_habitats/2110-embryonic_shifting%20dunes.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	4	48	31	71	0	109	3	10
Habitat area (ha)	40	2883	2828	3454	0	1493	0	3979

Map of SCIs proposed for Embryonic shifting dunes & Article 17 distribution

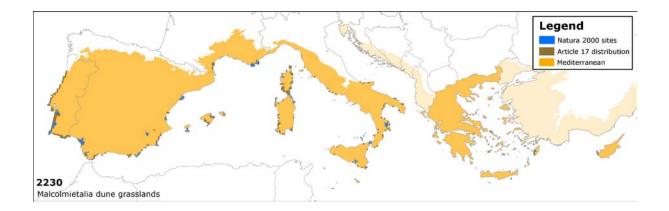
Malcolmietalia dune grasslands (2230)

Habitats Manual 2007 (only the most relevant part taken) :

Associations with many small annuals and often abundant ephemeral spring bloom, with *Malcolmia lacera*, *M. ramosissima*, *Evax astericiflora*, *E. lusitanica*, *Anthyllis hamosa*, *Linaria pedunculata*, of deep sands in dry interdunal depressions of the coasts.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/dunes_habitats/dunes_habitats/2230-malcolmietalia%20dune%20grasslands.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	PT	UK
Number of sites	1	27	27	7	?	98	8	1
Habitat area (ha)	0	3121	1099	45	?	2969	4101	40

Map of SCIs proposed for Malcolmietalia dune grasslands & Article 17 distribution

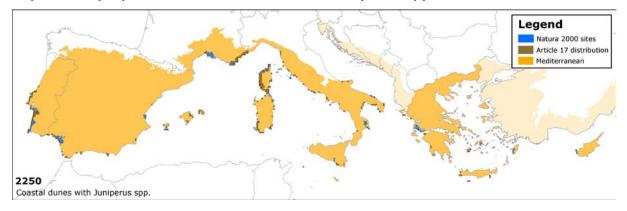
Coastal dunes with Juniperus spp. (2250)

Habitats Manual 2007 (only the most relevant part taken) :

Juniper formations [*Juniperus turbinata* ssp. *turbinata* (=*J. lycia, J. phoenicea ssp. lycia*), *J. macrocarpa, J. navicularis* (=*J. transtagana, J. oxycedrus* ssp. *transtagana*), *J. communis*] of Mediterranean and thermo-Atlantic coastal dune slacks and slopes (*Juniperion lyciae*). *Juniperus communis* formations of calcareous dunes. This habitat type includes the communities of *J. communis* from the calcareous dunes of Jutland and the communities of *J. phoenicea* ssp. *lycia* in Rièges woods in the Camargue.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats-art17report/library/datasheets/habitats/dunes_habitats/dunes_habitats/2250-coastal%20dunes%20with%20Juniperus%20spp..pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	PT
Number of sites	1	26	20	16	?	91	8
Habitat area (ha)	0	4917	2546	1050	?	5597	4874

Map of SCIs proposed for Coastal dunes with Juniperus spp. & Article 17 distribution

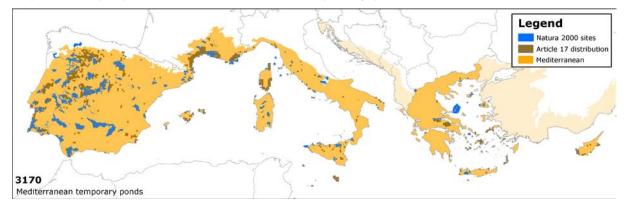
Mediterranean temporary ponds (3170)

Habitats Manual 2007 (only the most relevant part taken) :

Very shallow temporary ponds (a few centimetres deep) which exist only in winter or late spring, with a flora mainly composed of Mediterranean therophytic and geophytic species belonging to the alliances *Isoetion, Nanocyperion flavescentis, Preslion cervinae, Agrostion salmanticae, Heleochloion* and *Lythrion tribracteati.*

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitatart17report/library/datasheets/habitats/freshwater_habitats/freshwater_habitats/3170mediterranean/download/1/3170-Mediterranean%20temporary%20ponds.pdf


Other information

According to the ETC/BD calculations 51-75% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	CR	IT	МТ	PT
Number of sites	2	138	56	34	0	108	9	29
Habitat area (ha)	0	29268	5513	1481	0	2609	2	21323

Map of SCIs proposed for Mediterranean temporary ponds & Article 17 distribution

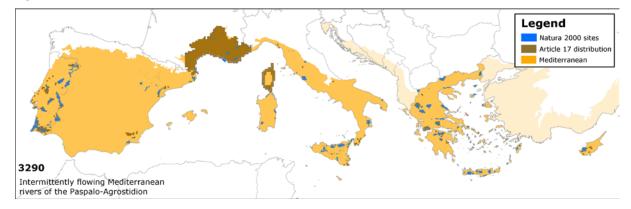
Intermittently flowing Mediterranean rivers of the *Paspalo-Agrostidion* (3290)

Habitats Manual 2007 (only the most relevant part taken) :

Intermittently flowing Mediterranean rivers with *Paspalo-Agrostidion* communities. They correspond to the river type 24.53, but with the particularity of an interrupted flow and a dry bed during a part of the year. The bed of the river can be completely dry or left with some pools.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats-art17report/library/datasheets/habitats/freshwater_habitats/freshwater_habitats/3290-intermittently%20flowing%20Med.%20rivers%20Paspalo-Agrostidion.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	IT	PT
Number of sites	7	24	19	87	88	24
Habitat area (ha)	4	724	1570	9854	2695	12356

Map of SCIs proposed for Intermittently flowing Mediterranean rivers of the *Paspalo-Agrostidion* & Article 17 distribution

Thermo-Mediterranean and pre-desert scrub (5330)

Habitats Manual 2007 (only the most relevant part taken) :

Scrub formations characteristic of the thermo-Mediterranean zone. Included here are those formations, for the most part indifferent to the siliceous or calcareous nature of the substrate, that reach their greatest extension or optimal development in the thermo-Mediterranean zone. Also included are the numerous, strongly characterised, thermophile formations endemic to the south of the Iberian peninsula, mostly thermo-Mediterranean but sometimes meso-Mediterranean; in their great local diversity they are a western counterpart of, and sometimes approach in appearance, the mostly eastern Mediterranean phryganas, which, however, on account of their strong structural singularity, are listed separately under 33.

Sub-types :

32.21G - Genista fasselata brush

Brushes dominated by the tall, spiny *Genista fasselata* of very restricted distribution in the eastern Mediterranean basin.

31.8B5p - Xerophilous Crataegus azarolus var. aronia scrub.

Low to medium height scrub of the semi-arid zone of Cyprus characterised by *Crataegus azarolus* var. *aronia* with an abundance of herbs and grasses and belonging to the *Genisto-Ceratonietum*. It develops at low to medium altitudes (300-500 m) on calcareous substrates.

32.22 - Tree-spurge formations

Stands of *Euphorbia dendroides*, remarkable tertiary relict of Macaronesian origin; they occur as a facies of the thermo-Mediterranean brushes of the Balearics, Corsica, Sardinia, Sicily, Isles Eolie, Egadi, Pelagi, Pantelleria, Crete, and, very locally, of those of the coasts of northern Catalonia, south-eastern France, peninsular Italy and its islands, central Greece, notably on slopes facing the gulf of Corinth, the Peloponnese, the Aegean archipelagos, and enclaves of the Mediterranean periphery of Anatolia and the Levant. Particularly extensive and robust stands occur in Sicily, Sardinia and Crete where they may extend to relatively high altitudes. Very local formations in Mediterranean North Africa occupy the steep rocky slopes of some coastal capes and isolated inland sites (Ichkeul).

32.23 - Diss-dominated garrigues

Garrigues invaded and dominated by the high tussocks of *Ampelodesmos mauritanica*; typically thermo-Mediterranean, they also occur extensively in the meso-Mediterranean zone. They are most prevalent on the Tyrrhenian coast of central and southern Italy, in Sicily, in the Mediterranean zone and the less arid parts of the Saharo-Mediterranean transition zone of North Africa.

32.24 - Palmetto brush

Chamaerops humilis-dominated formations; other thermo-Mediterranean brushes or garrigues rich in the physiognomically important palmetto can be identified by a combination of this code and that of the other appropriate subdivision of 32.2. Palmetto brushes are best represented in the coastal areas of south-western, southern and eastern Iberia, the Balearics, Sicily and its satellite islands and Mediterranean North Africa, with more sporadic occurrences in the Guadalquivir basin, Sardinia, and the Tyrrhenian coasts and islands of peninsular Italy. 32.25 - Mediterranean pre-desert scrub. Periplocion angustifoliae, Anthyllidetalia terniflorae.

Shrub formations constituting, with the halo-nitrophilous scrubs (15.724) and the localised gypsum scrubs (15.93), much of the natural and semi-natural vegetation of the arid zone of south-eastern Spain (Almeria, Murcia, Alicante), a highly distinctive region of unique climatological, biological and landscape character within Europe, extremely rich in African and endemic species. Several of the most remarkable formations remain in only a few undisturbed localities and are gravely at risk⁸. Similar formations occur in the upper arid (Mediterranean arid) zone of North Africa. Outposts of these communities also exist in Sicily, the Egadi islands, the Pelagie islands, Malta and Pantelleria

32.26 - Thermo-Mediterranean broom fields (retamares)

West Mediterranean formations dominated by retamas (*Lygos* spp.) or by large, non-spiny thermo-Mediterranean brooms of genera *Cytisus* and *Genista*, limited to the Iberian peninsula, the Balearics, Mediterranean North Africa, Sicily and its associated islands, the Cilento coast of Campania.

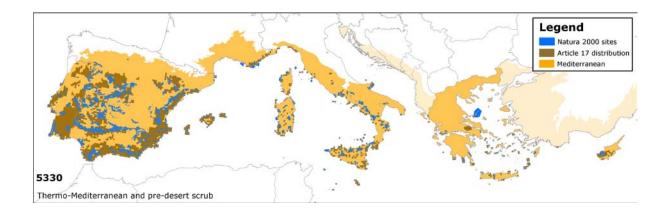
32.441p - Spiny spurge garrigues

Euphorbia melitensis garrigues of Malta

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <a href="http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/sclerophyllous_scrub/sclerophyllous

Other information


According to the ETC/BD calculations 0-50% of the area of this habitat type are within SCIs (see Appendix 1). This means that potentially important part of the management needs of this habitat types occurs outside the Natura 2000 network.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	16	356	13	36	0	387	13	28
Habitat area (ha)	828	353631	2727	8420	0	98964	351	42618

⁸ Communities dominated by hummocks of very tall stands of Lotus tree *Zyziphius lotus*, are included in the Annex I priority habitat 'Matorral with *Zyziphius*' (32.17).

Map of SCIs proposed for Thermo-Mediterranean and pre-desert scrub & Article 17 distribution

Semi-natural dry grasslands and scrubland facies on calcareous substrates (*Festuco-Brometalia*) (* important orchid sites) (6210)

Habitats Manual 2007 (only the most relevant part taken) :

Dry to semi-dry calcareous grasslands of the *Festuco-Brometea*. This habitat is formed on the one hand by steppic or subcontinental grasslands (*Festucetalia valesiacae*) and, on the other, by the grasslands of more oceanic and sub-Mediterranean regions (*Brometalia erecti*); in the latter case, a distinction is made between primary *Xerobromion* grasslands and secondary (semi-natural) *Mesobromion* grasslands with *Bromus erectus*; the latter are characterised by their rich orchid flora. Abandonment results in thermophile scrub with an intermediate stage of thermophile fringe vegetation (*Trifolio-Geranietea*).

Important orchid sites should be interpreted as sites that are important on the basis of one or more of the following three criteria:

(a) the site hosts a rich suite of orchid species

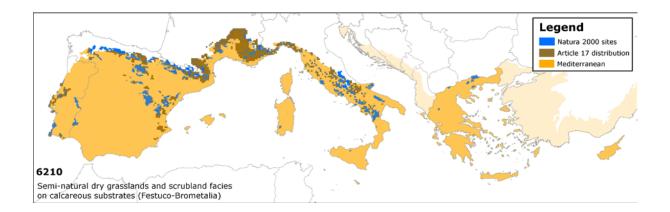
(b) the site hosts an important population of at least one orchid species considered not very common on the national territory

(c) the site hosts one or several orchid species considered to be rare, very rare or exceptional on the national territory.

Often in association with scrubland and thermophile forests and with dry pioneer *Sedum* meadows (*Sedo-Scleranthea*).

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats/grasslands/grasslands/6210-seminatural/download/1/6210-Seminatural%20dry%20grassl.%20%26amp%3B%20scrubland%20facies%20on%20calc.%20sub.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	ES	FR	HR	IT	PT
Number of sites	115	98	0	352	12
Habitat area (ha)	54178	37842	0	155783	10837

Map of SCIs proposed for Semi-natural dry grasslands and scrubland facies on calcareous substrates (*Festuco-Brometalia*) (* important orchid sites) & Article 17 distribution

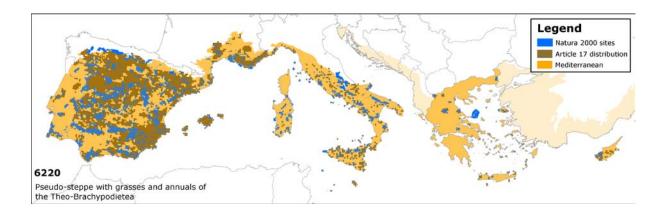
Pseudo-steppe with grasses and annuals of the *Thero-Brachypodietea* (6220)

Habitats Manual 2007 (only the most relevant part taken) :

Meso- and thermo-Mediterranean xerophile, mostly open, short-grass annual grasslands rich in therophytes; therophyte communities of oligotrophic soils on base-rich, often calcareous substrates. Perennial communities -Thero-Brachypodietea. Thero-Brachypodietalia: Astragalo-Poion Thero-Brachvpodion. Poetea bulbosae: bulbosae (basiphile). Trifolio-Periballion (silicolous). Annual communities - Tuberarietea guttatae Br.-Bl. 1952 em. Rivas-Martínez 1978, Trachynietalia distachyae Rivas-Martínez 1978: Trachynion distachyae (calciphile), Sedo-Ctenopsion (gypsophile), Omphalodion commutatae (dolomitic and silico-basiphile). In France a distinction can be made between: (a) annual herbaceous vegetation of dry, initial, low-nitrogen soils ranging from neutro-basic to calcareous: Stipo capensis-Brachypodietea distachyae (Br-Bl. 47) Brullo 85; (b) vegetation of more or less closed grasslands on deep, nitrocline and xerocline soil: Brachypodietalia phoenicoidis (Br-Bl. 31) Molinier 34. In Italy this habitat mainly exists in the South and on the islands (Thero-Brachypodietea, Poetea bulbosae, Lygeo-Stipetea).

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitats/grasslands/grasslands/grasslands/thero-brachypodietepdf/download/1/6220-Pseudosteppe%20with%20grasses%20%26amp%3B%20annuals%20Thero-Brachypodiete.pdf


Other information

According to the ETC/BD calculations 0-50% of the area of this habitat type are within SCIs (see Appendix 1). This means that potentially important part of the management needs of this habitat types occurs outside the Natura 2000 network.

	CY	ES	FR	GR	HR	IT	MT	PT
Number of sites	21	455	78	34	0	560	5	29
Habitat area (ha)	1528	408022	35473	13513	0	164421	105	47447

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

Map of SCIs proposed for Pseudo-steppe with grasses and annuals of the *Thero-Brachypodietea* & Article 17 distribution

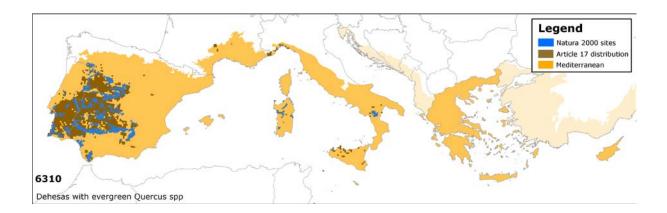
Dehesas with evergreen Quercus spp. (6310)

Habitats Manual 2007 (only the most relevant part taken) :

A characteristic landscape of the Iberian peninsula in which crops, pasture land or Meso-Mediterranean arborescent matorral, in juxtaposition or rotation, are shaded by a fairly closed to very open canopy of native evergreen oaks (*Quercus suber*, *Q.ilex*, *Q.rotundifolia*, *Q.coccifera*). It is an important habitat of raptors, including the threatened Iberian endemic eagle (*Aquila adalberti*), of the crane (*Grus grus*), of large insects and their predators and of the endangered felid (**Lynx pardinus*).

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitatart17report/library/datasheets/habitats/grasslands/grasslands/6310dehesas_evergreen/download/1/6310-Dehesas%20with%20evergreen%20Quercus%20spp..pdf


Other information

According to the ETC/BD calculations 0-50% of the area of this habitat type are within SCIs (see Appendix 1). This means that potentially important part of the management needs of this habitat types occurs outside the Natura 2000 network.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	ES	FR	IT	PT
Number of sites	131	3	25	27
Habitat area (ha)	554501	892	10866	122604

Map of SCIs proposed for Dehesas with evergreen *Quercus* spp. & Article 17 distribution

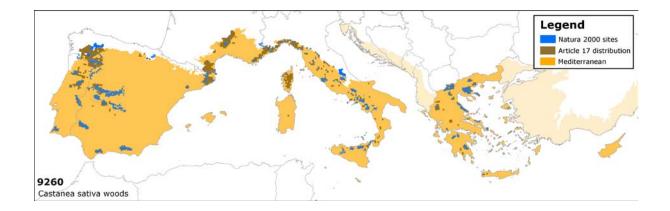
Castanea sativa woods (9260)

Habitats Manual 2007 (only the most relevant part taken) :

Supra-Mediterranean and sub-Mediterranean *Castanea sativa*-dominated forests and old established plantations with semi-natural undergrowth.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/forests/9260-</u> castanea_woodspdf/download/1/9260-Castanea%20sativa%20woods.pdf


Other information

According to the ETC/BD calculations 0-50% of the area of this habitat type are within SCIs (see Appendix 1). This means that potentially important part of the management needs of this habitat types occurs outside the Natura 2000 network.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	ES	FR	GR	HR	IT	PT
Number of sites	65	29	25	0	190	11
Habitat area (ha)	44416	17290	17889	0	74368	6168

Map of SCIs proposed for Castanea sativa woods & Article 17 distribution

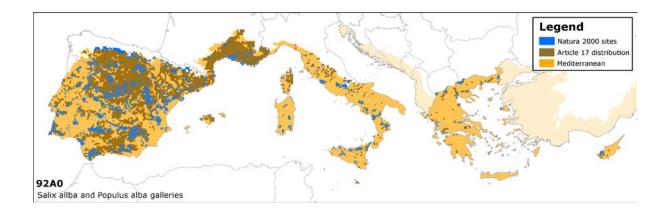
Salix alba and Populus alba galleries (92A0)

Habitats Manual 2007 (only the most relevant part taken) :

Riparian forests of the Mediterranean and Black Sea basins dominated by *Salix alba, Salix fragilis* or their relatives (Pal Class. 44.141). Mediterranean and Central Eurasian multilayered riverine forests with *Populus* spp., *Ulmus* spp., *Salix* spp., *Alnus* spp., *Acer* spp., *Tamarix* spp., *Juglans regia*, *Quercus robur*, *Quercus pedunculiflora*, *Fraxinus angustifolia*, *Fraxinus pallisiae*, lianas. Tall poplars, *Populus alba*, *Populus caspica*, *Populus euphratica* (*Populus diversifolia*), are usually dominant in height; they may be absent or sparse in some associations which are then dominated by species of the genera listed above (Pal Class. 44.6).

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitatart17report/library/datasheets/habitats/forests/forests/92a0-salix_galleriespdf/download/1/92A0-Salix%20alba%20and%20Populus%20alba%20galleries.pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	6	391	89	40	?	263	2	36
Habitat area (ha)	28	76528	21133	4012	?	28520	4	13930

Map of SCIs proposed for *Salix alba* and *Populus alba* galleries & Article 17 distribution

Southern riparian galleries and thickets (*Nerio-Tamaricetea* and *Securinegion tinctoriae*) (92D0)

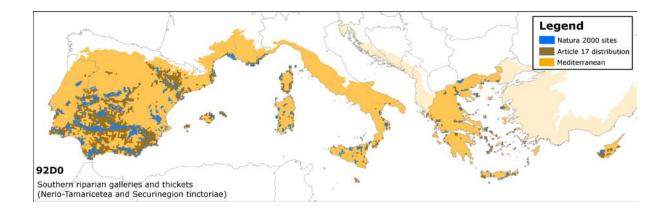
Habitats Manual 2007 (only the most relevant part taken) :

Tamarisk, oleander, and chaste tree galleries and thickets and similar low ligneous formations of permanent or temporary streams and wetlands of the thermo-Mediterranean zone and south-western Iberia, and of the most hygromorphic locations within the Saharo-Mediterranean and Saharo-Sindian zones. Includes formations of *Tamarix smyrnensis* (syn. *Tamarix ramossissima*) of stream sides and coastal localities of the Pontic and Steppic regions of western Eurasia.

The formations with Tamarix africana should not be taken into account.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitathttp://forum.eionet.europa.eu/x_habitatart17report/library/datasheets/habitats/forests/forests/92d0-southern_neriotama/download/1/92D0-Southern%20riparian%20galleries%20%26amp%3B%20thickets%20Nerio-Tamaric...pdf


Other information

According to the ETC/BD calculations 76-100% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT
Number of sites	20	325	39	73	0	134	8	18
Habitat area (ha)	639	54896	3419	9199	0	4443	14	13776

Map of SCIs proposed for Southern riparian galleries and thickets (*Nerio-Tamaricetea* and *Securinegion tinctoriae*) & Article 17 distribution

Olea and Ceratonia forests (9320)

Habitats Manual 2007 (only the most relevant part taken) :

Thermo-Mediterranean or thermo-Canarian woodland dominated by arborescent *Olea europaea* ssp. *sylvestris*, *Ceratonia siliqua*, *Pistacia lentiscus*, *Myrtus communis* or, in the Canary Islands, *by Olea europaea* ssp. *cerasiformis* and *Pistacia atlantica*. Most formations will be listed as arborescent matorral (35.12), but a few stands may have a sufficiently tall, closed canopy to qualify for this unit.

Sub-types :

45.11 - Wild olive woodland

Olea europaea ssp. *sylvestris* - dominated formations. A climax olive forest, with *Ceratonia siliqua* and *Pistacia lentiscus* exists on the north flank of Djebel Ichkeul in northern Tunisia. Elsewhere, the communities most resembling olive forest are found in southern Andalusia (*Tamo communis-Oleetum sylvestris*: extinct?), in Menorca (*Prasio majoris-Oleetum sylvestris*), Sardinia, Sicily, Calabria, Crete.

45.12 - Carob woodland

Ceratonia siliqua - dominated formations, often with *Olea europaea* ssp. *sylvestris* and *Pistacia lentiscus*. The most developed examples, some truly forest-like, are to be found in Tunisia, on the slopes of the Djebel, where they constitute carobdominated facies of the wild olive woodlands (45.11), in Mallorca (*Cneoro tricocci-Ceratonietum siliquae*), in eastern Sardinia, in south-eastern Sicily, in Puglia, in Crete.

45.13 - Canarian olive woodland

Olea europaea ssp. cerasiformis and Pistacia atlantica formations of the Canary Islands.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/forests/forests/9320-olea_ceratonia/download/1/9320-Olea%20and%20Ceratonia%20forests.pdf


Other information

According to the ETC/BD calculations 51-75% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT	UK
Number of sites	15	72	14	60	0	59	6	3	1
Habitat area (ha)	5468	25469	3380	49893	0	11671	27	3582	60

Map of SCIs proposed for Olea and Ceratonia forests & Article 17 distribution

Quercus suber forests (9330)

Habitats Manual 2007 (only the most relevant part taken) :

West-Mediterranean silicicolous forests dominated by *Quercus suber*, usually more thermophile and hygrophile than 45.3.

Sub-types :

45.21 - Tyrrhenian cork-oak forests

Quercion suberis

Mostly meso-Mediterranean *Quercus suber* forests of Italy, Sicily, Sardinia, Corsica, France and north-eastern Spain. They are most often degraded to arborescent matorral (32.11).

45.22 - South-western Iberian cork-oak forests

Quercion fagineo-suberis

Quercus suber forests, often with Q. faginea or Q. canariensis, of the southwestern quadrant of the Iberian peninsula.

45.23 -North-western Iberian cork-oak forests

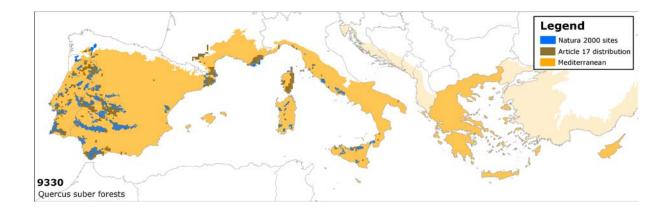
Very local, exiguous *Quercus suber* enclaves in the *Q. pyrenaica* forest area of the valleys of the Sil and of the Mino (Galicia).

45.24 - Aquitanian cork-oak woodland

Isolated *Q. suber*-dominated stands occurring either as a facies of dunal pine-cork oak forests or in a very limited area of the eastern Landes.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/forests/9330-</u> guercus_forestspdf/download/1/9330-Quercus%20suber%20forests.pdf


Other information

According to the ETC/BD calculations 51-75% of the area of this habitat type are within SCIs (see Appendix 1). This means that Natura 2000 network provides an important framework for the management of this habitat type.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	ES	FR	IT	PT
Number of sites	84	26	78	32
Habitat area (ha)	172693	16960	23719	19211

Map of SCIs proposed for *Quercus suber* forests & Article 17 distribution

Quercus ilex and Quercus rotundifolia forests (9340)

Habitats Manual 2007 (only the most relevant part taken) :

Forests dominated by Quercus ilex or Q. rotundifolia, often, but not necessarily, calcicolous.

Sub-types :

45.31 - Meso-Mediterranean holm-oak forests

Rich meso-Mediterranean formations, penetrating locally, mostly in ravines, into the thermo-Mediterranean zone. They are often degraded to arborescent matorral (32.11), and some of the types listed below no longer exist in the fully developed forest state relevant to category 45; they have nevertheless been included, both to provide appropriate codes for use in 32.11, and because restoration may be possible.

45.32 - Supra-Mediterranean holm-oak forests

Formations of the supra-Mediterranean levels, often mixed with deciduous oaks, *Acer* spp. or *Ostrya carpinifolia*.

45.33 - Aquitanian holm-oak woodland

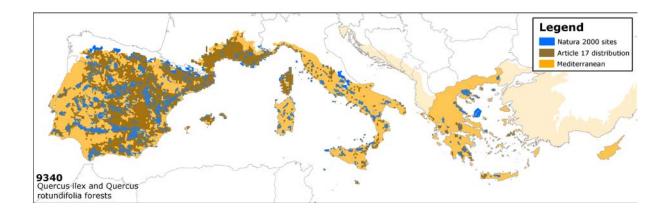
Isolated *Quercus ilex*-dominated stands occurring as a facies of dunal pine-holm oak forests.

45.34 - Quercus rotundifolia woodland

Iberian forest communities formed by *Q. rotundifolia*. Generally, even in mature state, less tall, less luxuriant and drier than the fully developed forests that can be constituted by the closely related *Q. ilex*, they are, moreover, most often degraded into open woodland or even arborescent matorral. Species characteristic of the undergrowth are *Arbutus unedo*, *Phillyrea angustifolia*, *Rhamnus alaternus*, *Pistacia terebinthus*, *Rubia peregrina*, *Jasminum fruticans*, *Smilax aspera*, *Lonicera etrusca*, *L. implexa*.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitat-art17report/library/datasheets/habitats/forests/9340-</u> <u>quercus_rotundifoli/download/1/9340-</u> <u>Quercus%20ilex%20and%20Quercus%20rotundifolia%20forests.pdf</u>


Other information

According to the ETC/BD calculations 0-50% of the area of this habitat type are within SCIs (see Appendix 1). This means that potentially important part of the management needs of this habitat types occurs outside the Natura 2000 network.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	ES	FR	GR	HR	IT	МТ	PT
Number of sites	472	100	44	0	432	4	27
Habitat area (ha)	563538	92131	61816	0	176350	66	31036

Map of SCIs proposed for *Quercus ilex* and *Quercus rotundifolia* forests & Article 17 distribution

Mediterranean pine forests with endemic Mesogean pines (9540)

Habitats Manual 2007 (only the most relevant part taken) :

Mediterranean and thermo-Atlantic woods of thermophilous pines, mostly appearing as substitution or paraclimactic stages of forests of the *Quercetalia ilicis* or *Ceratonio-Rhamnetalia*. Long-established plantations of these pines, within their natural area of occurrence, and with an undergrowth basically similar to that of paraclimactic formations, are included.

Sub-types :

42.81 - Maritime pine forests

Forests and plantations of *Pinus pinaster* ssp. *atlantica* of south-western France and the western Iberian peninsula.

42.82 - Mesogean pine forests

Forests of *Pinus pinaster* ssp. *pinaster* (=*Pinus mesogeensis*) of the western Mediterranean, mostly in siliceous meso-Mediterranean, upper meso-Mediterranean and supra-Mediterranean situations of Spain, Corsica, south-eastern France, north-western Italy, Sardinia and Pantelleria.

42.821 - Iberian mesogean pine forests

Pinus pinaster forests of the Iberian peninsula, appearing mostly as substitution communities of *Quercus rotundifolia*, *Q. pyrenaica* or, locally, *Q. suber*, *Q. faginea* woodlands.

42.822 - Corbières mesogean pine forests

Isolated Pinus pinaster - dominated woods of the Corbières.

42.823 - Franco-Italian mesogean pine forests

Pinus pinaster forests of siliceous lower meso-Mediterranean areas of Provence, of marls and limestones of the upper meso-Mediterranean level of the Maritime Alps and the Ligurian Alps, and of mostly siliceous or clayey soils of the hills of Liguria and Tuscany.

42.824- Corsican mesogean pine forests

Pinetum pinastri, Erico-Arbutetum p., Galio-Pinetum p.

Pinus pinaster-dominated forests of the meso- and supra-Mediterranean levels of Corsica, mostly on granitic substrates; they are very developed, accompanied by a maquis-like understory, in the meso-Mediterranean zone, mostly in its upper levels; they occur locally within the supra-Mediterranean zone, on adrets and at lower altitudes, as facies of laricio pine forests.

42.825 - Sardinian mesogean pine forests

Pinus pinaster formations on granitic substrates of northern Sardinia, with *Arbutus unedo*, *Quercus ilex*, *Rosmarinus officinalis*, *Erica arborea*, *Genista corsica*, *Lavandula stoechas*, *Rubia peregrina*, *Calicotome spinosa*, *Pistacia lentiscus*, *Teucrium marum*.

42.826- Pantellerian mesogean pine forests

Pinus pinaster woods of Pantelleria.

42.83 - Stone pine forests

Mediterranean forests and old naturalised plantations of *Pinus pinea*. Old introductions in many areas often makes the distinction between self sown forests and long-established formations of artificial origin difficult. These are thus included here, while recent, obviously artificial groves are not.

42.831 - Iberian stone pine forests

Pinus pinea forests of the Iberian peninsula, where they reach their greatest development.

42.832- Balearic stone pine woods

Pinus pinea formations of the Balearic Islands, native only on Ibiza and Formentera.

42.833 - Provence stone pine woods

Pinus pinea formations of Provence, possibly spontaneous on coastal sands and in the Maures area.

42.834 - Corsican stone pine woods

Pinus pinea formations of the littoral of Corsica, some of which may be of natural origin, in particular on old dunes of the east coast.

42.835 - Sardinian stone pine forests

Pinus pinea formations of Sardinia.

42.836 - Sicilian stone pine forests

Pinus pinea formations of the Monti Peloritani, north-western Sicily, of probable native origin.

42.837 - Peninsular Italian stone pine forests

Large, ancient, *Pinus pinea* plantations of the Tyrennian, and locally, Adriatic coasts of the Italian peninsula, in Liguria, Toscany, Latium, Campania, Emilia-Romana (Ravenna) and Friuli-Venetia Giulia (Grado).

42.838 - Greek stone pine forests

Pinus pinea woods of the littoral and coastal hills of the Peloponnese, Chalcidice, Crete and Aegean islands, rather local but probably in part, at least, spontaneous; a splendid example exists, in particular, on Skiathos.

42.84 - Aleppo pine forests

Woods of *Pinus halepensis*, a frequent colonist of thermo- and calcicolous meso-Mediterranean scrubs. The distinction between spontaneous forests and longestablished formations of artificial origin is often difficult. The latter are thus included here, while recent, obviously artificial groves are not.

42.841 - Iberian Aleppo pine forests

Pinus halepensis forests of Spain, considered native for at least two-thirds of their considerable expanse; they are mostly restricted to eastern regions on the Mediterranean slope of the Catalonian mountains, the Maestrazgo, the pre-Baetic ranges of the upper Guadalquivir basin, the southern Andalusian mountains; they penetrate farther inland in the Ebro basin and around the headwaters of the Tagus and Guadalquivir systems.

42.842 - Balearic Aleppo pine forests

Pinus halepensis formations of the Balearics, present and probably native on all the major islands.

42.843 - Provenço-Ligurian Aleppo pine forests

Mostly lower meso-Mediterranean *Pinus halepensis* forests of Provence and of the lower slopes and coastlines of the Maritime and Ligurian Alps, extensive and undoubtedly native.

42.844 - Corsican Aleppo pine woods

Rare and local *Pinus halepensis* woods of the Corsican coasts, some, at least, possibly natural.

42.845 - Sardinian Aleppo pine woods

Pinus halepensis formations of Sardinia, where certainly native woods occur on Isola di San Pietro and the Sulcis coast of Iglesiente.

42.846 - Sicilian Aleppo pine woods

Pinus halepensis formations of Sicily and peripheral islands (Egadi, Lampedusa, Pantelleria).

42.847 - Peninsular Italian Aleppo pine forests

Pinus halepensis formations of the Italian peninsula; extensive, probably at least partially native ones are individualised in the subdivisions below.

42.848 - Greek Aleppo pine forests

Pinus halepensis formations of Greece, where the species is relatively widespread, particularly in Attica, Thessaly, the coasts of the Peloponnese and of central continental Greece, the Ionian islands, Chalcidici, the northern Sporades, Euboea and Skiros.

42.85 - Aegean pine forests

Pinus brutia forests of Crete and eastern Aegean islands. Eastern vicariants of Aleppo pine forests (42.84), they comprise, however, taller, more luxuriant, and often extensive, formations. Disjunct formations of this pine or of related species, described from Crimea and the Caucasian region (*Pinus pityusa, Pinus stankewiczii, Pinus eldarica*) have been included.

42.851 - Aegean pine forests of Crete

Pinus brutia-dominated forests of Crete and its satellite islands Gavdos and Gaidaronisi, pure or mixed with *Cupressus sempervirens*; they are widespread in particular in the White Mountains, the Psiloriti range, the Dikti range and, locally, in the Sitia mountains and the Asterousia mountains.

42.852 - Aegean pine forests of Lesbos

Extensive *Pinus brutia* forests of Lesbos, occupying Mount Olympus and surrounding hills in the south-eastern quadrant of the island, as well as parts of the Kuratsonas range in the north-west; these forests harbour the only European population of the nuthatch Sitta krueperi and the most significant one of the orchid *Comperia comperiana*.

42.853 - Aegean pine forests of Samos

Pinus brutia forests covering large expanses of Samos, in particular in the Ambelos range, the Kerki mountains, the southern hills and the north-eastern peninsula.

42.854 - Aegean pine woods of Chios

Remnant forests of Chios with a composition and stratification similar to those of the forests of Samos.

42.855 - Aegean pine forests of Thasos

Broad *Pinus brutia* belt on the lower reaches of Thasos, up to about 400 to 500 metres, mixed with *Pinus pallasiana* in the higher areas.

42.856 - Aegean pine woods of Samothrace

Mostly sparse Pinus brutia formations of the lowlands of Samothrace.

42.857 - Aegean pine forests of Rhodes

Remnant *Pinus brutia* forests of Rhodes, still represented by some relatively natural formations with rich scrub undergrowth.

42.858 - Aegean pine forests of Karpathos

Fairly extensive *Pinus brutia* forests of Karpathos, distributed, in particular, in the northern coastal area, the southern interior and the middle elevation of Kali Limni.

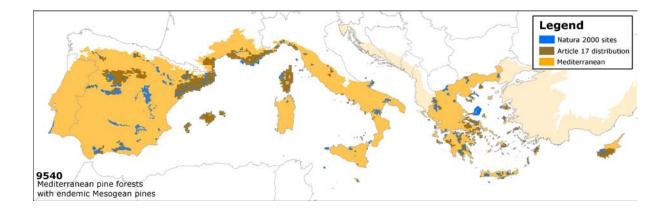
42.859 - Aegean pine forests of the Dodecanese

Pinus brutia formations of the islands of Simi, Kos, Leros and Ikaria.

Conservation status assessed at the European level and MS level

The information is available in the summary sheet at <u>http://forum.eionet.europa.eu/x_habitats</u> <u>art17report/library/datasheets/habitats/forests/forests/9540-mediterranean/download/1/9540-</u> <u>Mediterranean%20pine%20forests%20with%20endemic%20Mesogean%20pines.pdf</u>

Other information


According to the ETC/BD calculations 0-50% of the area of this habitat type are within SCIs (see Appendix 1). This means that potentially important part of the management needs of this habitat types occurs outside the Natura 2000 network.

Number of SCIs and habitat area (ha) within SCIs per Member State in the Mediterranean biogeographical region

	CY	ES	FR	GR	HR	IT	МТ	PT*
Number of sites	23	133	37	71	0	105	2	1
Habitat area (ha)	39555	249319	15944	112395	0	29283	18	

*not assessed in MED/MMED in the Art17

Map of SCIs proposed for Mediterranean pine forests with endemic Mesogean pines & Article 17 distribution

Appendix 1. List of species and habitats types of the Mediterranean region

- Different colours are used for different habitat groups. Species/habitat types present in only one MS are excluded.
- H= habitat type, A = amphibian, I = invertebrate, M = mammal, P = plant, R = reptile
- **Prio** = priority habitat type or species
- I, II and IV refer to Annexes of the Habitats Directive.
- **MED CS** = Conservation status at the Mediterranean region. Red = unfavourable-bad, amber = unfavourable-inadequate, grey = unknown.
- **Positive trend**: positive trend for population & habitat for species or area of the habitat were used. 0 means that there was not any positive trend reported under the used parameters. Maximum value for species is 16 and 8 for habitat types.
- N2K coverage: symbols indicate how many % of habitat area/species distribution are within the SCIs (• = 0-50, •• = 51-75 and ••• = 76-100).
 Empty cell means that the available data did not allow calculation. See method on Appendix 2.
- Criterion A = number of MS where species/habitat type is present, Criterion B = species/habitat types at U2, U1 or unknown status and Criterion
 C = negative trend and A(B+C) = the agreed algorithm.
- Cells in yellow highlight the data that was used for ranking the habitat types and species.
- Y^e= exception for some MS

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Coastal	2110	Н	Embryonic shifting dunes	N	Υ				U2	0	•••	7	10	5	105
Coastal	1150	Н	Coastal lagoons	Y	Y				U2	0	•••	7	9	4	91
Coastal	1310	Н	Salicornia and other annuals colonizing mud and sand	N	Y				U2	0	•••	7	8	4	84
Coastal	1210	Н	Annual vegetation of drift lines	N	Y				U1	0	•••	7	8	3	77
Coastal	1410	Н	Mediterranean salt meadows (Juncetalia maritimi)	N	Y				ХХ	1	•••	7	8	3	77
Coastal	1420	н	Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi)	N	Y				xx	0	•••	7	8	3	77
Coastal	2230	Н	Malcolmietalia dune grasslands	N	Y				U1	1	•••	7	8	3	77
Coastal	1110	н	Sandbanks which are slightly covered by sea water all the time	N	Y				хх	0	•••	7	8	1	63
Coastal	1510	Н	Mediterranean salt steppes (Limonietalia)	Y	Y				ХХ	0	•••	6	7	3	60

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	Ш	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Coastal	2260	Н	Cisto-Lavenduletalia dune sclerophyllous scrubs	N	Y				ХХ	0	٠	6	7	3	60
Coastal	2250	Н	Coastal dunes with Juniperus spp.	Y	Y				U1	0	•••	6	6	3	54
Coastal	1130	Н	Estuaries	N	Y				ХХ	0	•••	5	7	3	50
Coastal	2120	Н	Shifting dunes along the shoreline with Ammophila arenaria ("white dunes")	N	Y				U2	0	•••	5	7	3	50
Coastal	2190	Н	Humid dune slacks	N	Y				U2	0	••	6	5	3	48
Coastal	1170	Н	Reefs	Ν	Y				U1	0	•••	7	5	1	42
Coastal	8330	Н	Submerged or partially submerged sea caves	Ν	Y				U1	0	•••	7	5	1	42
Coastal	1140	Н	Mudflats and sandflats not covered by seawater at low tide	N	Y				U2	0	•••	5	6	2	40
Coastal	1240	Н	Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium spp.	N	Y				U1	0	••	8	3	2	40
Coastal	5410	Н	West Mediterranean clifftop phryganas (Astragalo- Plantaginetum subulatae)	N	Y				U2	0	•	5	5	3	40
Coastal	1160	Н	Large shallow inlets and bays	N	Y				ХХ	0	••	5	6	1	35
Coastal	2210	Н	Crucianellion maritimae fixed beach dunes	Ν	Y				U1	0	•••	4	5	3	32
Coastal	2270	Н	Wooded dunes with Pinus pinea and/or Pinus pinaster	Y	Y				U1	0	•••	5	4	2	30
Coastal	5320	Н	Low formations of Euphorbia close to cliffs	Ν	Y				U1	0	•••	5	4	2	30
Coastal	1430	Н	Halo-nitrophilous scrubs (Pegano-Salsoletea)	Ν	Y				ХХ	0	••	6	4	0	24
Coastal	2240	Н	Brachypodietalia dune grasslands with annuals	Ν	Y				U1	0	•••	4	5	1	24
Coastal	5420	Н	Sarcopoterium spinosum phryganas	Ν	Y				FV	2	•	4	3	0	12
Coastal	2220	Н	Dunes with Euphorbia terracina	Ν	Y				U2	1	•	4	1	1	8
Coastal	5430	Н	Endemic phryganas of the Euphorbio-Verbascion	Ν	Y				ХХ	0	•••	4	2	0	8
Coastal	1230	Н	Vegetated sea cliffs of the Atlantic and Baltic Coasts	Ν	Y				U1	0	•••	2	2	1	6
Coastal	1320	Н	Spartina swards (Spartinion maritimae)	Ν	Y	1			ХХ	0	•••	2	2	1	6
Coastal	2130	Н	Fixed coastal dunes with herbaceous vegetation ("grey dunes")	Y	Y				U1	0	•••	2	2	1	6

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Coastal	1520	Н	Iberian gypsum vegetation (Gypsophiletalia)	Y	Y				ХХ	0	•	2	2	0	4
Coastal	2150	Н	Atlantic decalcified fixed dunes (Calluno-Ulicetea)	Y	Y				U1	0	•••	2	2	0	4
Coastal	1349	М	Tursiops truncatus	Ν	1	Y	Y	Ν	ХХ	0	•	8	9	2	88
Coastal	1224	R	Caretta caretta	Y	1	Y	Y	Ν	ХХ	1	•	8	8	1	72
Coastal	1227	R	Chelonia mydas	Y	1	Y	Y	Ν	U2	0		6	9	1	60
Coastal	1366	М	Monachus monachus	Y	1	Y	Y	Ν	U2	0	•	4	7	3	40
Coastal	1223	R	Dermochelys coriacea	Ν	1	Ν	Y	Ν	U2	0		4	6	1	28
Coastal	1581	Р	Kosteletzkya pentacarpos	Ν		Y	Y	Ν	U2	1	•••	3	3	1	12
Coastal	1591	Р	Helianthemum caput-felis	Ν		Y	Y	Ν	U2	0		2	3	2	10
Coastal	1395	Р	Petalophyllum ralfsii	N	1	Y	Ν	Ν	ХХ	0	••	4	2	0	8
Coastal	1674	Р	Anchusa crispa	Y		Y	Y	Ν	U2	0	••	2	2	2	8
Coastal	1229	R	Phyllodactylus europaeus	N		Y	Y	Ν	U2	0	••	2	2	1	6
Coastal	1608	Р	Rouya polygama	Ν		Y	Y	Ν	U1	1	••	2	2	1	6
Coastal	1643	Р	Limonium strictissimum	Y		Y	Y	Ν	U1	0	••	2	2	1	6
Coastal	1681	Р	Thymus carnosus	Ν		Y	Y	Ν	ХХ	0	•••	2	1	2	6
Coastal	1715	Р	Linaria flava	Ν		Y	Y	Ν	U2	0	••	2	2	1	6
Coastal	1742	Р	Plantago algarbiensis	Ν		Y	Y	Ν	ХХ	0	•	2	1	2	6
Coastal	4114	Р	Linaria pseudolaxiflora	N		Y	Y	Ν	U2	0	••	2	2	1	6
Coastal	1351	М	Phocoena phocoena	N	t	Y	Y	Ν	U1	0	•	2	2	0	4
Coastal	1419	Р	Botrychium simplex	N	1	Y	Y	Ν	U1	0	••	2	2	0	4
Coastal	1465	Р	Silene velutina	Y	1	Y	Y	Ν	U1	0	••	2	1	0	2
Coastal	1593	Р	Halimium verticillatum	N	\mathbf{T}	Y	Y	Ν	ХХ	0	٠	2	1	0	2
Coastal	1639	Р	Limonium lanceolatum	N	\mathbf{T}	Y	Y	Ν	ХХ	0	•••	2	1	0	2
Forests	9320	н	Olea and Ceratonia forests	N	Y				U1	1	•	8	6	3	72
Forests	92A0	н	Salix alba and Populus alba galleries	N	Y				ХХ	0	•••	7	7	3	70

Habitat group	N2K code	Taxono- mical group	Description	Prio	1	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Forests	92D0	н	Southern riparian galleries and thickets (Nerio- Tamaricetea and Securinegion tinctoriae)	N	Υ	/			хх	0	•••	7	6	2	56
Forests	9540	н	Mediterranean pine forests with endemic Mesogean pines	N	Y	/			хх	0	•	6	5	2	42
Forests	91E0	н	Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae)	Y	Y	/			U2	0	•••	5	5	2	35
Forests	2270	н	Wooded dunes with Pinus pinea and/or Pinus pinaster	Y	Y	'			U1	0	•••	5	4	2	30
Forests	9260	н	Castanea sativa woods	N	Y	'			XX	0	•••	5	5	1	30
Forests	9580	Н	Mediterranean Taxus baccata woods	Y	Y	'			XX	1	•••	5	5	1	30
Forests	9340	н	Quercus ilex and Quercus rotundifolia forests	N	Y	'			ХХ	1	••	6	4	0	24
Forests	9330	Н	Quercus suber forests	N	Y	'			XX	0	•••	4	3	2	20
Forests	91F0	н	Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris)	N	Y	/			U2	0	•••	4	4	1	20
Forests	9560	н	Endemic forests with Juniperus spp.	Y	Y	'			XX	1	•••	6	3	0	18
Forests	91B0	н	Thermophilous Fraxinus angustifolia woods	N	Y	'			ХХ	0	•	4	4	0	16
Forests	9380	н	Forests of Ilex aquifolium	N	Y	'			FV	0	•••	5	2	1	15
Forests	9530	н	(Sub-) Mediterranean pine forests with endemic black pines	Y	Y	/			U1	1	•••	5	3	0	15
Forests	9150	н	Medio-European limestone beech forests of the Cephalanthero-Fagion	N	Y	/			хх	0	•••	4	2	0	8
Forests	9180	н	Tilio-Acerion forests of slopes, screes and ravines	Y	Y	'			U1	0	•••	4	2	0	8
Forests	9120	н	Atlantic acidophilous beech forests with Ilex and sometimes also Taxus in the shrublayer (Quercion robori-petraeae or Ilici-Fagenion)	N	Y	/			U2	1	•••	2	2	0	4
Forests	9160	н	Sub-Atlantic and medio-European oak or oak- hornbeam forests of the Carpinion betuli	N	Y	/			U1	0	•••	2	2	0	4
Forests	9230	н	Galicio-Portuguese oak woods with Quercus robur and Quercus pyrenaica	N	Y	/			хх	1	•	2	2	0	4

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Forests	9240	Н	Quercus faginea and Quercus canariensis Iberian woods	N	Y				ХХ	1	•	2	2	0	4
Forests	9350	н	Quercus macrolepis forests	N	Y				FV	0	•••	2	2	0	4
Forests	9430	н	Subalpine and montane Pinus uncinata forests (* if on gypsum or limestone)	N	Y				U1	0	•••	2	2	0	4
Forests	9570	н	Tetraclinis articulata forests	Y	Y				U1	0	•	2	2	0	4
Forests	92C0	н	Platanus orientalis and Liquidambar orientalis woods (Platanion orientalis)	N	Y				FV	0	•••	3	1	0	3
Forests	9290	н	Cupressus forests (Acero-Cupression)	N	Y				FV	1	•••	2	1	0	2
Forests	92B0	н	Riparian formations on intermittent Mediterranean water courses with Rhododendron ponticum, Salix and others	N	Y				хх	0	•••	2	1	0	2
Forests	9110	н	Luzulo-Fagetum beech forests	N	Y				FV	0	•••	2	0	0	0
Forests	9130	н	Asperulo-Fagetum beech forests	N	Y				FV	0	•	2	0	0	0
Forests	9250	н	Quercus trojana woods	N	Y				FV	0	•••	2	0	0	0
Forests	9280	Н	Quercus frainetto woods	N	Y				FV	0	•	2	0	0	0
Forests	1302	М	Rhinolophus mehelyi	N		Y	Y	Ν	U2	0	••	6	10	6	96
Forests	1305	М	Rhinolophus euryale	N		Y	Y	Ν	U2	0	••	6	9	5	84
Forests	1304	М	Rhinolophus ferrumequinum	N		Y	Y	Ν	U2	0	•	6	8	5	78
Forests	1316	М	Myotis capaccinii	N		Y	Y	Ν	U2	0	•	5	7	5	60
Forests	1324	М	Myotis myotis	N		Y	Y	Ν	U2	0	••	6	7	3	60
Forests	1323	М	Myotis bechsteinii	N		Y	Y	Ν	ХХ	0	•	5	7	4	55
Forests	1322	М	Myotis nattereri	N		Ν	Y	Ν	ХХ	1		6	6	3	54
Forests	1308	М	Barbastella barbastellus	N		Y	Y	Ν	U2	0	•	5	8	2	50
Forests	1312	М	Nyctalus noctula	N		Ν	Y	Ν	ХХ	0		6	6	2	48
Forests	1333	М	Tadarida teniotis	N		Ν	Y	Ν	ХХ	1		7	6	0	42
Forests	1083	I	Lucanus cervus	N		Y	Ν	Ν	ХХ	0	••	5	5	3	40

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	Ш	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Forests	1078	I.	Callimorpha quadripunctaria	Y		Y	Ν	Ν	ХХ	0	•	6	3	3	36
Forests	1311	М	Pipistrellus savii	Ν		Ν	Y	Ν	ХХ	0		6	6	0	36
Forests	1363	М	Felis silvestris	Ν		Ν	Y	Ν	ХХ	0		5	5	2	35
Forests	1084	I.	Osmoderma eremita	Y		Y	Y	Ν	ХХ	0	٠	4	5	3	32
Forests	1326	М	Plecotus auritus	Ν		Ν	Y	Ν	ХХ	0		5	5	1	30
Forests	1328	М	Nyctalus lasiopterus	Ν		Ν	Y	Ν	ХХ	0		5	6	0	30
Forests	1331	М	Nyctalus leisleri	N		Ν	Y	Ν	ХХ	0		5	5	1	30
Forests	5009	М	Pipistrellus pygmaeus	Ν		Ν	Y	Ν	ХХ	0		6	4	1	30
Forests	1087	I.	Rosalia alpina	Y		Y	Y	Ν	ХХ	0	••	4	4	3	28
Forests	2016	М	Pipistrellus kuhlii	Ν		Ν	Y	Ν	FV	0		7	3	0	21
Forests	1088	I.	Cerambyx cerdo	Ν		Y	Y	Ν	ХХ	0	•	5	3	1	20
Forests	1317	М	Pipistrellus nathusii	Ν		Ν	Y	Ν	ХХ	0		4	4	1	20
Forests	1352	М	Canis lupus	Y		Ye	Ye	Y ^e	ХХ	3	٠	4	4	1	20
Forests	1281	R	Elaphe longissima	Ν		Ν	Y	Ν	ХХ	1		4	4	0	16
Forests	1309	М	Pipistrellus pipistrellus	Ν		Ν	Y	Ν	ХХ	0		5	3	0	15
Forests	1314	М	Myotis daubentonii	N		Ν	Y	Ν	ХХ	1		5	3	0	15
Forests	1167	А	Triturus carnifex	Ν		Y	Y	Ν	U1	0	••	2	3	4	14
Forests	1362	М	Lynx pardinus	Y		Υ	Y	Ν	U2	0	•••	2	4	3	14
Forests	1191	А	Alytes obstetricans	N		Ν	Y	Ν	ХХ	0		3	3	1	12
Forests	1193	А	Bombina variegata	N		Y	Y	Ν	U1	0	•	3	2	2	12
Forests	1235	R	Chamaeleo chamaeleon	N		Ν	Y	Ν	ХХ	1		3	2	2	12
Forests	1354	М	Ursus arctos	Y		Y ^e	Y ^e	Ν	U1	2	••	3	4	0	12
Forests	1386	Р	Buxbaumia viridis	N		Y	Ν	Ν	ХХ	1	••	4	3	0	12
Forests	1174	А	Triturus marmoratus	N		Ν	Y	Ν	ХХ	1		3	2	1	9
Forests	1306	М	Rhinolophus blasii	Ν		Y	Y	Ν	ХХ	0	••	3	3	0	9

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Forests	1064	I.	Fabriciana elisa	Ν		Ν	Y	Ν	U1	0		2	1	2	6
Forests	1085	I	Buprestis splendens	N		Y	Y	Ν	ХХ	0	٠	3	2	0	6
Forests	1172	А	Chioglossa lusitanica	N		Y	Y	Ν	U1	0	٠	2	2	1	6
Forests	1259	R	Lacerta schreiberi	N		Y	Y	Ν	ХХ	0	••	2	2	1	6
Forests	1341	М	Muscardinus avellanarius	N		Ν	Y	Ν	ХХ	0		3	2	0	6
Forests	1372	М	Capra aegagrus	N		Υ	Y	Ν	U1	0	••	2	2	1	6
Forests	1373	М	Ovis gmelini musimon	N		Y	Y	Ν	FV	2	•••	2	2	1	6
Forests	1733	Р	Veronica micrantha	N		Y	Y	Ν	ХХ	0	•	2	1	2	6
Forests	5005	М	Myotis punicus	N		Ν	Y	Ν	U1	1		2	2	1	6
Forests	1024	I.	Geomalacus maculosus	N		Υ	Y	Ν	ХХ	0	•••	2	2	0	4
Forests	1075	I.	Graellsia isabellae	N		Y	Ν	Y	ХХ	0	•	2	2	0	4
Forests	1342	М	Dryomys nitedula	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Forests	1421	Р	Trichomanes speciosum	N		Y	Y	Ν	ХХ	0	•	2	2	0	4
Forests	1902	Р	Cypripedium calceolus	N		Υ	Y	Ν	U1	3	••	2	2	0	4
Forests	5003	М	Myotis alcathoe	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Forests	1240	R	Algyroides fitzingeri	N		Ν	Y	Ν	ХХ	0		2	1	0	2
Forests	1367	М	Cervus elaphus corsicanus	Y		Y	Y	Ν	FV	3	••	2	1	0	2
Forests	1862	Р	Narcissus cyclamineus	N		Υ	Y	Ν	U1	0	••	2	1	0	2
Grasslands	2230	Н	Malcolmietalia dune grasslands	N	Υ				U1	1	•••	7	8	3	77
Grasslands	1510	Н	Mediterranean salt steppes (Limonietalia)	Y	Υ				ХХ	0	•••	6	7	3	60
Grasslands	2120	Н	Shifting dunes along the shoreline with Ammophila arenaria ("white dunes")	N	Y				U2	0	•••	5	7	3	50
Grasslands	6420	Н	Mediterranean tall humid grasslands of the Molinio- Holoschoenion	N	Y				ХХ	1	•	6	5	1	36
Grasslands	6220	Н	Pseudo-steppe with grasses and annuals of the Thero- Brachypodietea	Y	Y				xx	1	•	7	4	1	35

	Nor	Taxono-								Destribut	NIGIC	O	0	O ritoria	
Habitat group	N2K code	mical group	Description	Prio	1	II	IV	V	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Grasslands	6510	Н	Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis)	N	Y				ХХ	0	••	5	5	2	35
Grasslands	6430	Н	Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels	N	Y				xx	0	••	5	4	2	30
Grasslands	2240	Н	Brachypodietalia dune grasslands with annuals	N	Y				U1	0	•••	4	5	1	24
Grasslands	6230	Н	Species-rich Nardus grasslands, on silicious substrates in mountain areas (and submountain areas in Continental Europe)	Y	Y				U1	0	•••	5	3	1	20
Grasslands	6310	Н	Dehesas with evergreen Quercus spp.	N	Y				ХХ	0	•	4	3	1	16
Grasslands	6110	Н	Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion albi	Y	Y				хх	0	•	5	3	0	15
Grasslands	6210	Н	Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites)	N	Y				хх	0	•••	4	2	1	12
Grasslands	6410	Н	Molinia meadows on calcareous, peaty or clayey-silt- laden soils (Molinion caeruleae)	N	Y				хх	1	•••	4	3	0	12
Grasslands	2220	Н	Dunes with Euphorbia terracina	N	Y				U2	1	•	4	1	1	8
Grasslands	6170	Н	Alpine and subalpine calcareous grasslands	N	Y				ХХ	0	•	4	2	0	8
Grasslands	8230	Н	Siliceous rock with pioneer vegetation of the Sedo- Scleranthion or of the Sedo albi-Veronicion dillenii	N	Y				хх	0	•	4	2	0	8
Grasslands	2130	Н	Fixed coastal dunes with herbaceous vegetation ("grey dunes")	Y	Y				U1	0	•••	2	2	1	6
Grasslands	2330	Н	Inland dunes with open Corynephorus and Agrostis grasslands	N	Y				U1	0	••	2	2	1	6
Grasslands	8240	Н	Limestone pavements	Y	Y				U1	0	•••	3	1	1	6
Grasslands	6130	Н	Calaminarian grasslands of the Violetalia calaminariae	N	Y				ХХ	0	•••	2	2	0	4
Grasslands	5130	Н	Juniperus communis formations on heaths or calcareous grasslands	N	Y				U1	0	•••	2	1	0	2
Grasslands	6160	Н	Oro-Iberian Festuca indigesta grasslands	N	Υ				ХХ	0	•	2	1	0	2
Grasslands	1303	М	Rhinolophus hipposideros	N	1	Y	Y	Ν	U2	0	•	7	9	6	105

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Grasslands	1307	М	Myotis blythii	N		Y	Y	Ν	U2	1	••	7	9	5	98
Grasslands	1310	М	Miniopterus schreibersii	N		Y	Y	Ν	U2	0	•	7	10	2	84
Grasslands	1304	М	Rhinolophus ferrumequinum	Ν		Y	Y	Ν	U2	0	•	6	8	5	78
Grasslands	1329	М	Plecotus austriacus	Ν		Ν	Y	Ν	ХХ	0		7	7	3	70
Grasslands	1308	М	Barbastella barbastellus	Ν		Y	Y	Ν	U2	0	•	5	8	2	50
Grasslands	1312	М	Nyctalus noctula	Ν		Ν	Y	Ν	ХХ	0		6	6	2	48
Grasslands	1327	М	Eptesicus serotinus	Ν		Ν	Y	Ν	U1	0		6	5	2	42
Grasslands	1321	М	Myotis emarginatus	Ν		Y	Y	Ν	XX	0	••	5	6	2	40
Grasslands	1065	I	Euphydryas aurinia	N		Y	Ν	Ν	ХХ	0	••	5	4	3	35
Grasslands	1076	I	Proserpinus proserpina	Ν		Ν	Y	Ν	U2	1		5	5	2	35
Grasslands	1057	I	Parnassius apollo	Ν		Ν	Y	Ν	ХХ	0		4	6	2	32
Grasslands	1058	I	Maculinea arion	N		Ν	Y	Ν	ХХ	0		4	5	3	32
Grasslands	5009	М	Pipistrellus pygmaeus	Ν		Ν	Y	Ν	XX	0		6	4	1	30
Grasslands	1053	I	Zerynthia polyxena	Ν		Ν	Y	Ν	ХХ	0		3	4	4	24
Grasslands	1298	R	Vipera ursinii (except Vipera ursinii rakosiensis)	N		Y	Y	Ν	U2	0	••	3	4	3	21
Grasslands	2016	М	Pipistrellus kuhlii	N		Ν	Y	Ν	FV	0		7	3	0	21
Grasslands	1263	R	Lacerta viridis (including L. bilineata)	Ν		Ν	Y	Ν	ХХ	0		4	3	0	12
Grasslands	1272	R	Chalcides bedriagai	Ν		Ν	Y	Ν	ХХ	0		2	2	2	8
Grasslands	1279	R	Elaphe quatuorlineata	N		Y	Y	Ν	U1	0	••	2	2	2	8
Grasslands	1338	М	Microtus cabrerae	N		Y	Y	Ν	ХХ	0	•	2	2	2	8
Grasslands	1783	Р	Picris willkommii	N		Ν	Y	Ν	ХХ	0		2	1	3	8
Grasslands	1836	Р	Colchicum corsicum	Ν		Ν	Y	Ν	U2	0		2	2	2	8
Grasslands	1871	Р	Leucojum nicaeense	Ν		Y	Y	Ν	U1	0	•••	2	2	2	8
Grasslands	4102	Р	Anacamptis urvilleana	Ν		Y	Y	Ν	ХХ	0	•	2	2	2	8
Grasslands	1054	I	Papilio alexanor	Ν		Ν	Y	Ν	ХХ	0		2	2	1	6

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Grasslands	1060	I	Lycaena dispar	N		Y	Y	Ν	ХХ	0	٠	2	2	1	6
Grasslands	1288	R	Coluber hippocrepis	N		Ν	Y	Ν	ХХ	0		3	2	0	6
Grasslands	1372	М	Capra aegagrus	N		Y	Y	Ν	U1	0	••	2	2	1	6
Grasslands	1857	Р	Narcissus pseudonarcissus ssp. nobilis	N		Y	Y	Ν	ХХ	0		2	1	2	6
Grasslands	5005	М	Myotis punicus	N		Ν	Y	Ν	U1	1		2	2	1	6
Grasslands	1077	I	Hyles hippophaes	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Grasslands	1276	R	Ablepharus kitaibelii	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Grasslands	1419	Р	Botrychium simplex	N		Y	Y	Ν	U1	0	••	2	2	0	4
Grasslands	1603	Р	Eryngium viviparum	Y		Y	Y	Ν	ХХ	0	٠	2	1	1	4
Grasslands	1720	Р	Euphrasia genargentea	Y		Y	Y	Ν	U1	0	••	2	2	0	4
Grasslands	1775	Р	Santolina semidentata	N		Y	Y	Ν	ХХ	0	••	2	1	1	4
Grasslands	1874	Р	Iris boissieri	N		Ν	Y	Ν	ХХ	0		2	1	1	4
Grasslands	1996	Р	Narcissus triandrus	N		Ν	Y	Ν	ХХ	0		2	1	1	4
Grasslands	5003	М	Myotis alcathoe	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Grasslands	5012	М	Plecotus macrobullaris	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Grasslands	1293	R	Elaphe situla	N		Υ	Y	Ν	ХХ	0	••	3	1	0	3
Grasslands	1261	R	Lacerta agilis	N		Ν	Y	Ν	FV	0		2	1	0	2
Grasslands	1268	R	Ophisops elegans	N		Ν	Y	Ν	ХХ	0		2	1	0	2
Grasslands	1280	R	Coluber jugularis	N		Ν	Y	Ν	ХХ	0		2	1	0	2
Grasslands	1367	М	Cervus elaphus corsicanus	Y		Y	Y	Ν	FV	3	••	2	1	0	2
Grasslands	1499	Р	Jonopsidium savianum	N		Y	Y	Ν	ХХ	0	•	2	1	0	2
Grasslands	1862	Р	Narcissus cyclamineus	N		Y	Y	Ν	U1	0	••	2	1	0	2
Grasslands	1865	Р	Narcissus asturiensis	N		Y	Y	Ν	ХХ	1	••	2	1	0	2
Grasslands	1885	Р	Festuca elegans	N		Y	Y	Ν	ХХ	0	•••	2	1	0	2
Grasslands	1891	Р	Festuca summilusitana	N		Y	Y	Ν	XX	0	••	2	1	0	2

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Grasslands	1892	Р	Holcus setiglumis ssp. duriensis	N		Y	Y	Ν	ХХ	1		2	1	0	2
Grasslands	1656	Р	Gentiana ligustica	N		Y	Y	Ν	FV	0	•••	2	0	0	0
Heaths & scrubs	2260	Н	Cisto-Lavenduletalia dune sclerophyllous scrubs	N	Y				ХХ	0	•	6	7	3	60
Heaths & scrubs	2250	Н	Coastal dunes with Juniperus spp.	Y	Y				U1	0	•••	6	6	3	54
Heaths & scrubs	5410	Н	West Mediterranean clifftop phryganas (Astragalo- Plantaginetum subulatae)	N	Y				U2	0	•	5	5	3	40
Heaths & scrubs	5330	н	Thermo-Mediterranean and pre-desert scrub	N	Y				ХХ	2	•	7	5	0	35
Heaths & scrubs	2210	н	Crucianellion maritimae fixed beach dunes	N	Y				U1	0	•••	4	5	3	32
Heaths & scrubs	5320	н	Low formations of Euphorbia close to cliffs	N	Y				U1	0	•••	5	4	2	30
Heaths & scrubs	5230	Н	Arborescent matorral with Laurus nobilis	Y	Y				U1	1	•	7	3	1	28
Heaths & scrubs	5210	н	Arborescent matorral with Juniperus spp.	N	Y				ХХ	0	•	6	2	1	18
Heaths & scrubs	4090	Н	Endemic oro-Mediterranean heaths with gorse	N	Y				ХХ	0	•	5	2	1	15
Heaths & scrubs	5420	Н	Sarcopoterium spinosum phryganas	N	Y				FV	2	•	4	3	0	12
Heaths & scrubs	4060	Н	Alpine and Boreal heaths	N	Y				ХХ	1	••	5	2	0	10
Heaths & scrubs	5110	н	Stable xerothermophilous formations with Buxus sempervirens on rock slopes (Berberidion p.p.)	N	Y				ХХ	0	•••	5	2	0	10
Heaths & scrubs	5220	н	Arborescent matorral with Zyziphus	Y	Y				ХХ	0	••	3	3	0	9
Heaths & scrubs	4030	Н	European dry heaths	N	Y				U2	0	••	4	2	0	8
Heaths &	5430	Н	Endemic phryganas of the Euphorbio-Verbascion	Ν	Y				ХХ	0	•••	4	2	0	8

Habitat group	N2K code	Taxono- mical	Description	Prio	I	Ш	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
		group													
scrubs															
Heaths & scrubs	2150	Н	Atlantic decalcified fixed dunes (Calluno-Ulicetea)	Y	Y				U1	0	•••	2	2	0	4
Heaths & scrubs	4020	Н	Temperate Atlantic wet heaths with Erica ciliaris and Erica tetralix	Y	Y				хх	0	•	2	2	0	4
Heaths & scrubs	5120	Н	Mountain Cytisus purgans formations	N	Y				хх	0	••	3	1	0	3
Heaths & scrubs	5130	н	Juniperus communis formations on heaths or calcareous grasslands	N	Y				U1	0	•••	2	1	0	2
Heaths & scrubs	5310	Н	Laurus nobilis thickets	N	Y				FV	0	••	3	0	0	0
Heaths & scrubs	1303	М	Rhinolophus hipposideros	N		Y	Y	Ν	U2	0	•	7	9	6	105
Heaths & scrubs	1307	М	Myotis blythii	N		Y	Y	Ν	U2	1	••	7	9	5	98
Heaths & scrubs	1323	М	Myotis bechsteinii	N		Y	Y	Ν	хх	0	•	5	7	4	55
Heaths & scrubs	1327	М	Eptesicus serotinus	N		Ν	Y	Ν	U1	0		6	5	2	42
Heaths & scrubs	1078	I	Callimorpha quadripunctaria	Y		Y	Ν	Ν	хх	0	•	6	3	3	36
Heaths & scrubs	1076	I	Proserpinus proserpina	N		Ν	Y	Ν	U2	1		5	5	2	35
Heaths & scrubs	1363	М	Felis silvestris	N		N	Y	N	ХХ	0		5	5	2	35
Heaths & scrubs	1283	R	Coronella austriaca	N		N	Y	N	ХХ	0		5	4	2	30
Heaths & scrubs	1074	I	Eriogaster catax	N		Y	Y	N	ХХ	0	••	4	5	2	28
Heaths & scrubs	1056	I	Parnassius mnemosyne	N		Ν	Y	Ν	ХХ	0		3	4	3	21

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Heaths & scrubs	1237	R	Podarcis filfolensis	N		N	Y	N	FV	0		5	3	1	20
Heaths & scrubs	1281	R	Elaphe longissima	N		N	Y	N	ХХ	1		4	4	0	16
Heaths & scrubs	1050	I	Saga pedo	N		N	Y	N	U2	0		3	3	2	15
Heaths & scrubs	4082	Р	Crepis pusilla	N		Y	Y	N	ХХ	0	•	3	4	1	15
Heaths & scrubs	1362	М	Lynx pardinus	Y		Y	Y	N	U2	0	•••	2	4	3	14
Heaths & scrubs	1235	R	Chamaeleo chamaeleon	N		Ν	Y	N	хх	1		3	2	2	12
Heaths & scrubs	1591	Р	Helianthemum caput-felis	N		Y	Y	N	U2	0		2	3	2	10
Heaths & scrubs	1306	М	Rhinolophus blasii	N		Y	Y	N	хх	0	••	3	3	0	9
Heaths & scrubs	1256	R	Podarcis muralis	N		Ν	Y	N	FV	0		4	2	0	8
Heaths & scrubs	1272	R	Chalcides bedriagai	N		Ν	Y	N	хх	0		2	2	2	8
Heaths & scrubs	1274	R	Chalcides ocellatus	N		Ν	Y	N	хх	0		4	2	0	8
Heaths & scrubs	1064	I	Fabriciana elisa	N		Ν	Y	N	U1	0		2	1	2	6
Heaths & scrubs	1259	R	Lacerta schreiberi	N		Y	Y	N	ХХ	0	••	2	2	1	6
Heaths & scrubs	1289	R	Telescopus fallax	N		N	Y	N	ХХ	0		3	2	0	6
Heaths & scrubs	1341	М	Muscardinus avellanarius	N		N	Y	N	ХХ	0		3	2	0	6
Heaths & scrubs	1373	М	Ovis gmelini musimon	N		Y	Y	N	FV	2	•••	2	2	1	6

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Heaths & scrubs	1742	Р	Plantago algarbiensis	N		Y	Y	N	хх	0	•	2	1	2	6
Heaths & scrubs	1859	Р	Narcissus humilis	N		Y	Y	N	U2	0	•	2	1	2	6
Heaths & scrubs	1024	I	Geomalacus maculosus	N		Y	Y	N	xx	0	•••	2	2	0	4
Heaths & scrubs	1051	I	Apteromantis aptera	N		Y	Y	N	хх	0	•	2	2	0	4
Heaths & scrubs	1055	I	Papilio hospiton	N		Y	Y	N	U1	0	•••	2	1	1	4
Heaths & scrubs	1077	I	Hyles hippophaes	N		Ν	Y	N	xx	0		2	2	0	4
Heaths & scrubs	1218	R	Testudo marginata	N		Y	Y	N	xx	0	•	2	2	0	4
Heaths & scrubs	1284	R	Coluber viridiflavus	N		Ν	Y	N	FV	1		4	1	0	4
Heaths & scrubs	1342	М	Dryomys nitedula	N		Ν	Y	N	xx	0		2	2	0	4
Heaths & scrubs	1874	Р	Iris boissieri	N		Ν	Y	N	хх	0		2	1	1	4
Heaths & scrubs	1996	Р	Narcissus triandrus	N		Ν	Y	N	xx	0		2	1	1	4
Heaths & scrubs	4001	М	Crocidura sicula	N		Ν	Y	N	xx	0		2	2	0	4
Heaths & scrubs	5978	М	Erinaceus algirus	N		Ν	Y	N	ХХ	0		2	1	1	4
Heaths & scrubs	1246	R	Podarcis tiliguerta	N		Ν	Y	N	ХХ	0		2	1	0	2
Heaths & scrubs	1261	R	Lacerta agilis	N		Ν	Y	N	FV	0		2	1	0	2
Heaths & scrubs	1285	R	Coluber nummifer	N		Ν	Y	N	хх	0		2	1	0	2

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Heaths & scrubs	1582	Ρ	Thymelaea broterana	N		N	Y	N	U1	1		2	1	0	2
Heaths & scrubs	1593	Р	Halimium verticillatum	N		Y	Y	Ν	хх	0	•	2	1	0	2
Heaths & scrubs	1639	Р	Limonium lanceolatum	N		Y	Y	Ν	хх	0	•••	2	1	0	2
Marine	1150	Н	Coastal lagoons	Y	Y				U2	0	•••	7	9	4	91
Marine	1110	Н	Sandbanks which are slightly covered by sea water all the time	N	Y				хх	0	•••	7	8	1	63
Marine	1130	Н	Estuaries	Ν	Y				ХХ	0	•••	5	7	3	50
Marine	1120	Н	Posidonia beds (Posidonion oceanicae)	Y	Y				U1	1	••	7	6	1	49
Marine	1170	Н	Reefs	Ν	Y				U1	0	•••	7	5	1	42
Marine	8330	Н	Submerged or partially submerged sea caves	Ν	Y				U1	0	•••	7	5	1	42
Marine	1140	Н	Mudflats and sandflats not covered by seawater at low tide	N	Y				U2	0	•••	5	6	2	40
Marine	1160	Н	Large shallow inlets and bays	Ν	Y				ХХ	0	••	5	6	1	35
Marine	1349	М	Tursiops truncatus	Ν		Y	Y	Ν	ХХ	0	•	8	9	2	88
Marine	1027	I	Lithophaga lithophaga	Ν		Ν	Y	Ν	ХХ	0		6	6	6	72
Marine	1224	R	Caretta caretta	Y		Y	Y	Ν	ХХ	1	•	8	8	1	72
Marine	1227	R	Chelonia mydas	Y		Y	Y	Ν	U2	0		6	9	1	60
Marine	1350	М	Delphinus delphis	Ν		Ν	Y	Ν	U2	0		5	8	4	60
Marine	1028	I	Pinna nobilis	N		Ν	Y	Ν	U2	0		6	6	3	54
Marine	1366	М	Monachus monachus	Y		Y	Y	Ν	U2	0	٠	4	7	3	40
Marine	5031	М	Physeter catodon	N		Ν	Y	Ν	U2	0		5	6	2	40
Marine	2035	М	Ziphius cavirostris	Ν		Ν	Y	Ν	ХХ	0		5	5	2	35
Marine	2030	М	Grampus griseus	Ν		Ν	Y	Ν	ХХ	0		5	5	1	30
Marine	2034	М	Stenella coeruleoalba	N		Ν	Y	Ν	ХХ	0		5	5	1	30

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Marine	2621	М	Balaenoptera physalus	N		Ν	Y	Ν	ХХ	0		5	6	0	30
Marine	1223	R	Dermochelys coriacea	N		Ν	Y	Ν	U2	0		4	6	1	28
Marine	1008	l	Centrostephanus longispinus	N		Ν	Y	Ν	ХХ	0		5	5	0	25
Marine	1103	F	Alosa fallax	N		Y	Ν	Y	ХХ	0	•••	4	4	1	20
Marine	1152	F	Aphanius fasciatus	N		Y	Ν	Ν	U1	0	•••	4	3	2	20
Marine	1012	I	Patella ferruginea	N		Ν	Y	Ν	U2	0		3	5	1	18
Marine	2029	М	Globicephala melas	Ν		Ν	Y	Ν	ХХ	0		4	4	0	16
Marine	1095	F	Petromyzon marinus	Ν		Y ^e	Ν	Ν	ХХ	0	•••	3	3	0	9
Marine	1101	F	Acipenser sturio	Y		Y	Y	Ν	U2	0	٠	2	3	1	8
Marine	1099	F	Lampetra fluviatilis	N		Y ^e	Ν	Y ^e	ХХ	0	•••	2	2	0	4
Marine	1102	F	Alosa alosa	N		Y	Ν	Y	ХХ	0		2	2	0	4
Marine	1351	М	Phocoena phocoena	N		Y	Y	Ν	U1	0	•	2	2	0	4
Mires & bogs	1410	Н	Mediterranean salt meadows (Juncetalia maritimi)	Ν	Y				ХХ	1	•••	7	8	3	77
Mires & bogs	1420	н	Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi)	N	Y				хх	0	•••	7	8	3	77
Mires & bogs	92A0	Н	Salix alba and Populus alba galleries	N	Y				ХХ	0	•••	7	7	3	70
Mires & bogs	92D0	Н	Southern riparian galleries and thickets (Nerio- Tamaricetea and Securinegion tinctoriae)	N	Y				ХХ	0	•••	7	6	2	56
Mires & bogs	2190	Н	Humid dune slacks	N	Y				U2	0	••	6	5	3	48
Mires & bogs	6420	н	Mediterranean tall humid grasslands of the Molinio- Holoschoenion	N	Y				хх	1	•	6	5	1	36
Mires & bogs	91E0	н	Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae)	Y	Y				U2	0	•••	5	5	2	35
Mires & bogs	6430	Н	Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels	N	Y				ХХ	0	••	5	4	2	30
Mires & bogs	1430	Н	Halo-nitrophilous scrubs (Pegano-Salsoletea)	N	Y				ХХ	0	••	6	4	0	24
Mires & bogs	7140	Н	Transition mires and quaking bogs	N	Y				U2	0	•••	4	5	1	24

	Nor	Taxono-								Destricts	NOK	O	0	0	
Habitat group	N2K code	mical group	Description	Prio	1	Ш	IV	V	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Mires & bogs	91F0	Н	Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris)	N	Y				U2	0	•••	4	4	1	20
Mires & bogs	7220	Н	Petrifying springs with tufa formation (Cratoneurion)	Y	Y				ХХ	0	•••	4	3	1	16
Mires & bogs	7230	Н	Alkaline fens	N	Y				U2	0	•••	4	3	1	16
Mires & bogs	6410	н	Molinia meadows on calcareous, peaty or clayey-silt- laden soils (Molinion caeruleae)	N	Y				хх	1	•••	4	3	0	12
Mires & bogs	7210	н	Calcareous fens with Cladium mariscus and species of the Caricion davallianae	Y	Y				U1	0	•••	4	2	1	12
Mires & bogs	7110	Н	Active raised bogs	Y	Y				U2	0	•••	2	3	1	8
Mires & bogs	7150	н	Depressions on peat substrates of the Rhynchosporion	N	Y				ХХ	0	•	3	2	0	6
Mires & bogs	1520	Н	Iberian gypsum vegetation (Gypsophiletalia)	Y	Y				ХХ	0	•	2	2	0	4
Mires & bogs	92B0	Н	Riparian formations on intermittent Mediterranean water courses with Rhododendron ponticum, Salix and others	N	Y				xx	0	•••	2	1	0	2
Mires & bogs	1316	М	Myotis capaccinii	Ν		Y	Y	Ν	U2	0	•	5	7	5	60
Mires & bogs	1333	М	Tadarida teniotis	Ν		Ν	Y	Ν	ХХ	1		7	6	0	42
Mires & bogs	1217	R	Testudo hermanni	Ν		Y	Y	Ν	U1	0	••	4	6	4	40
Mires & bogs	1330	М	Myotis mystacinus	Ν		Ν	Y	Ν	ХХ	0		5	6	2	40
Mires & bogs	1065	I	Euphydryas aurinia	N		Y	Ν	Ν	ХХ	0	••	5	4	3	35
Mires & bogs	1391	Р	Riella helicophylla	N		Y	Ν	Ν	U1	1	•••	4	5	3	32
Mires & bogs	1041	I	Oxygastra curtisii	Ν		Y	Y	Ν	U2	0	••	4	5	2	28
Mires & bogs	1044	I	Coenagrion mercuriale	Ν		Y	Ν	Ν	U2	0	••	4	5	2	28
Mires & bogs	1201	A	Bufo viridis	Ν		Ν	Y	Ν	FV	0		5	3	2	25
Mires & bogs	1198	A	Pelobates cultripes	N		Ν	Y	Ν	ХХ	0		3	4	4	24
Mires & bogs	1189	A	Discoglossus pictus	Ν		Ν	Y	Ν	ХХ	0		3	3	4	21
Mires & bogs	1014	I	Vertigo angustior	N		Y	Ν	Ν	ХХ	0	•	4	3	2	20

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Mires & bogs	1203	A	Hyla arborea	N		Ν	Y	Ν	U1	0		5	3	1	20
Mires & bogs	1205	A	Hyla meridionalis	Ν		Ν	Y	Ν	U1	0		4	3	2	20
Mires & bogs	1314	М	Myotis daubentonii	Ν		Ν	Y	Ν	ХХ	1		5	3	0	15
Mires & bogs	1355	М	Lutra lutra	N		Y	Y	Ν	U2	2	••	5	3	0	15
Mires & bogs	1429	Р	Marsilea strigosa	N		Y	Y	Ν	ХХ	0	•	3	4	1	15
Mires & bogs	1016	I	Vertigo moulinsiana	N		Y	Ν	Ν	ХХ	0	•	3	3	1	12
Mires & bogs	1202	A	Bufo calamita	Ν		Ν	Y	Ν	ХХ	0		3	3	1	12
Mires & bogs	1209	A	Rana dalmatina	Ν		Ν	Y	Ν	U1	0		4	3	0	12
Mires & bogs	1426	Р	Woodwardia radicans	Ν		Y	Y	Ν	U1	2	••	4	2	1	12
Mires & bogs	1581	Р	Kosteletzkya pentacarpos	Ν		Y	Y	Ν	U2	1	•••	3	3	1	12
Mires & bogs	1900	Р	Spiranthes aestivalis	Ν		Ν	Y	Ν	ХХ	0		4	2	1	12
Mires & bogs	1036	I	Macromia splendens	Ν		Y	Y	Ν	ХХ	0	••	3	3	0	9
Mires & bogs	1219	R	Testudo graeca	N		Y	Y	Ν	U1	0	••	3	2	1	9
Mires & bogs	1190	A	Discoglossus sardus	N		Y	Y	Ν	U1	0	•••	2	2	2	8
Mires & bogs	1194	A	Discoglossus galganoi	N		Y	Y	Ν	ХХ	0	•	2	2	2	8
Mires & bogs	1216	A	Rana iberica	N		Ν	Y	Ν	U1	0		2	2	2	8
Mires & bogs	1338	М	Microtus cabrerae	Ν		Y	Y	Ν	ХХ	0	•	2	2	2	8
Mires & bogs	1395	Р	Petalophyllum ralfsii	N		Y	Ν	Ν	ХХ	0	••	4	2	0	8
Mires & bogs	1060	I	Lycaena dispar	Ν		Y	Y	Ν	ХХ	0	•	2	2	1	6
Mires & bogs	1428	Р	Marsilea quadrifolia	N		Y	Y	Ν	U2	0	•••	2	1	2	6
Mires & bogs	1614	Р	Apium repens	N		Y	Y	Ν	ХХ	0	•	2	1	2	6
Mires & bogs	1857	Р	Narcissus pseudonarcissus ssp. nobilis	Ν		Y	Y	Ν	ХХ	0		2	1	2	6
Mires & bogs	1204	A	Hyla sarda	Ν		Ν	Y	Ν	ХХ	0		2	1	1	4
Mires & bogs	1292	R	Natrix tessellata	N		Ν	Y	Ν	ХХ	0		2	2	0	4
Mires & bogs	1385	Р	Bruchia vogesiaca	N		Y	Ν	Ν	ХХ	0	•••	2	1	1	4

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Mires & bogs	1427	Р	Marsilea batardae	N		Y	Y	Ν	ХХ	0	••	2	1	1	4
Mires & bogs	1603	Р	Eryngium viviparum	Y		Y	Y	Ν	ХХ	0	٠	2	1	1	4
Mires & bogs	1434	Р	Salix salvifolia ssp. australis	N		Y	Y	Ν	U1	0		2	1	0	2
Mires & bogs	1618	Р	Thorella verticillatinundata	N		Y	Y	Ν	ХХ	0		2	1	0	2
Mires & bogs	1897	Р	Carex panormitana	Y		Y	Y	Ν	ХХ	0	•	2	1	0	2
Mires & bogs	1994	А	Hydromantes strinatii	N		Y	Y	Ν	FV	0	•	2	0	0	0
Rivers & lakes	3170	Н	Mediterranean temporary ponds	Y	Y				ХХ	0	••	7	6	3	63
Rivers & lakes	3140	Н	Hard oligo-mesotrophic waters with benthic vegetation of Chara spp.	N	Y				U1	0	•••	7	5	1	42
Rivers & lakes	3150	Н	Natural eutrophic lakes with Magnopotamion or Hydrocharition - type vegetation	N	Y				хх	1	•••	6	4	1	30
Rivers & lakes	3260	Н	Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation	N	Y				хх	0	•••	5	4	2	30
Rivers & lakes	3290	Н	Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion	N	Y				xx	1	•••	6	4	1	30
Rivers & lakes	3250	Н	Constantly flowing Mediterranean rivers with Glaucium flavum	N	Y				xx	0	•••	5	4	1	25
Rivers & lakes	3130	Н	Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or of the Isoëto-Nanojuncetea	N	Y				U1	0	•••	4	4	1	20
Rivers & lakes	3270	Н	Rivers with muddy banks with Chenopodion rubri p.p. and Bidention p.p. vegetation	N	Y				U2	1	•••	4	3	1	16
Rivers & lakes	3120	Н	Oligotrophic waters containing very few minerals generally on sandy soils of the West Mediterranean, with Isoetes spp.	N	Y				U1	0	•••	3	4	1	15
Rivers & lakes	3280	Н	Constantly flowing Mediterranean rivers with Paspalo- Agrostidion species and hanging curtains of Salix and Populus alba	N	Y				U1	1	••	5	2	1	15
Rivers & lakes	3160	Н	Natural dystrophic lakes and ponds	Ν	Y				ХХ	0	•••	3	3	1	12

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	п	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Rivers & lakes	3230	Н	Alpine rivers and their ligneous vegetation with Myricaria germanica	N	Y				U2	0	•••	2	3	1	8
Rivers & lakes	3110	Н	Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)	N	Y				хх	0		2	2	1	6
Rivers & lakes	3240	Н	Alpine rivers and their ligneous vegetation with Salix elaeagnos	N	Y				хх	0	•••	4	1	0	4
Rivers & lakes	1220	R	Emys orbicularis	Ν		Y	Y	Ν	ХХ	0	••	5	6	5	55
Rivers & lakes	1092	I	Austropotamobius pallipes	Ν		Y	Ν	Y	U2	0	٠	4	6	6	48
Rivers & lakes	1217	R	Testudo hermanni	Ν		Y	Y	Ν	U1	0	••	4	6	4	40
Rivers & lakes	1391	Р	Riella helicophylla	Ν		Y	Ν	Ν	U1	1	•••	4	5	3	32
Rivers & lakes	1301	М	Galemys pyrenaicus	Ν		Υ	Y	Ν	U2	0	••	3	5	5	30
Rivers & lakes	1041	I	Oxygastra curtisii	Ν		Υ	Y	Ν	U2	0	••	4	5	2	28
Rivers & lakes	1044	I	Coenagrion mercuriale	Ν	l	Y	Ν	Ν	U2	0	••	4	5	2	28
Rivers & lakes	1103	F	Alosa fallax	Ν		Υ	Ν	Y	U1	1	••	4	5	2	28
Rivers & lakes	1032	I	Unio crassus	Ν		Y	Y	Ν	ХХ	0	•	3	5	4	27
Rivers & lakes	1201	А	Bufo viridis	Ν		Ν	Y	Ν	FV	0		5	3	2	25
Rivers & lakes	1095	F	Petromyzon marinus	Ν	l	Y ^e	Ν	Ν	U2	0	••	3	5	3	24
Rivers & lakes	1096	F	Lampetra planeri	Ν		Y ^e	Ν	Ν	U2	0	••	3	5	3	24
Rivers & lakes	1099	F	Lampetra fluviatilis	Ν	l	Y ^e	Ν	Y ^e	U2	0	•	3	5	3	24
Rivers & lakes	1198	А	Pelobates cultripes	Ν		Ν	Y	Ν	ХХ	0		3	4	4	24
Rivers & lakes	1189	А	Discoglossus pictus	Ν		Ν	Y	Ν	ХХ	0		3	3	4	21
Rivers & lakes	1152	F	Aphanius fasciatus	Ν	t	Y	Ν	Ν	U1	0	•••	4	3	2	20
Rivers & lakes	1203	A	Hyla arborea	Ν	1	Ν	Y	Ν	U1	0		5	3	1	20
Rivers & lakes	1205	А	Hyla meridionalis	Ν	t	Ν	Y	Ν	U1	0		4	3	2	20
Rivers & lakes	1043	Ι	Lindenia tetraphylla	Ν	t	Y	Y	Ν	ХХ	0	•	3	4	2	18
Rivers & lakes	1149	F	Cobitis taenia	Ν	t	Y ^e	Ν	Ν	ХХ	0	٠	3	4	2	18

Habitat group	N2K code	Taxono- mical	Description	Prio	I	П	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Rivers & lakes	1355	group M	Lutra lutra	N		Y	Y	N	U2	2	••	5	3	0	15
	1029					Y		Y				2			14
Rivers & lakes		I	Margaritifera margaritifera	N			N		U2	0	•		4	3	
Rivers & lakes	1123	F	Rutilus alburnoides	N		Y	Ν	Ν	U2	0	••	2	4	3	14
Rivers & lakes	1127	F	Rutilus arcasii	Ν		Y	Ν	Ν	U2	0	•	2	4	3	14
Rivers & lakes	1167	А	Triturus carnifex	Ν		Y	Y	Ν	U1	0	••	2	3	4	14
Rivers & lakes	1125	F	Rutilus lemmingii	Ν		Y	Ν	Ν	U2	0	•	2	4	2	12
Rivers & lakes	1133	F	Anaecypris hispanica	Ν		Y	Y	Ν	U2	0	•	2	4	2	12
Rivers & lakes	1138	F	Barbus meridionalis	Ν		Y	Ν	Y	ХХ	0	••	3	3	1	12
Rivers & lakes	1142	F	Barbus comizo	Ν		Y	Ν	Y	U2	0	•	2	4	2	12
Rivers & lakes	1163	F	Cottus gobio	Ν		Y ^e	Ν	Ν	U1	0	••	3	3	1	12
Rivers & lakes	1191	А	Alytes obstetricans	Ν		Ν	Y	Ν	ХХ	0		3	3	1	12
Rivers & lakes	1193	А	Bombina variegata	Ν		Y	Y	Ν	U1	0	٠	3	2	2	12
Rivers & lakes	1202	А	Bufo calamita	Ν		Ν	Y	Ν	ХХ	0		3	3	1	12
Rivers & lakes	1209	А	Rana dalmatina	Ν		Ν	Y	Ν	U1	0		4	3	0	12
Rivers & lakes	1116	F	Chondrostoma polylepis	Ν		Y	Ν	Ν	U2	0	••	2	3	2	10
Rivers & lakes	1126	F	Chondrostoma toxostoma	Ν		Y	Ν	Ν	ХХ	0	••	2	3	2	10
Rivers & lakes	1222	R	Mauremys caspica	Ν		Y	Y	Ν	ХХ	0	••	2	3	2	10
Rivers & lakes	1036	I	Macromia splendens	Ν		Y	Y	Ν	XX	0	••	3	3	0	9
Rivers & lakes	1174	А	Triturus marmoratus	Ν		Ν	Y	Ν	XX	1		3	2	1	9
Rivers & lakes	1219	R	Testudo graeca	Ν		Y	Y	Ν	U1	0	••	3	2	1	9
Rivers & lakes	1101	F	Acipenser sturio	Y		Y	Y	Ν	U2	0	•	2	3	1	8
Rivers & lakes	1190	А	Discoglossus sardus	Ν		Y	Y	Ν	U1	0	•••	2	2	2	8

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Rivers & lakes	1194	А	Discoglossus galganoi	Ν		Y	Y	Ν	ХХ	0	•	2	2	2	8
Rivers & lakes	1216	А	Rana iberica	Ν		Ν	Y	Ν	U1	0		2	2	2	8
Rivers & lakes	1046	I	Gomphus graslinii	Ν		Y	Y	Ν	U1	0	•	3	2	0	6
Rivers & lakes	1137	F	Barbus plebejus	Ν		Y	Ν	Y	U1	0	•	2	2	1	6
Rivers & lakes	1172	А	Chioglossa lusitanica	Ν		Y	Y	Ν	U1	0	•	2	2	1	6
Rivers & lakes	1192	А	Alytes cisternasii	Ν		Ν	Y	Ν	ХХ	0		2	2	1	6
Rivers & lakes	1221	R	Mauremys leprosa	Ν		Y	Y	Ν	ХХ	0	••	3	2	0	6
Rivers & lakes	1428	Р	Marsilea quadrifolia	Ν		Y	Y	Ν	U2	0	•••	2	1	2	6
Rivers & lakes	1037	I	Ophiogomphus cecilia	Ν		Y	Y	Ν	ХХ	0	•	2	2	0	4
Rivers & lakes	1102	F	Alosa alosa	Ν		Y	Ν	Y	ХХ	0		2	2	0	4
Rivers & lakes	1204	А	Hyla sarda	Ν		Ν	Y	Ν	ХХ	0		2	1	1	4
Rivers & lakes	1292	R	Natrix tessellata	Ν		Ν	Y	Ν	ХХ	0		2	2	0	4
Rivers & lakes	1427	Р	Marsilea batardae	Ν		Y	Y	Ν	ХХ	0	••	2	1	1	4
Rivers & lakes	1131	F	Leuciscus souffia	Ν		Y	Ν	Ν	U1	0	••	2	1	0	2
Rivers & lakes	1134	F	Rhodeus sericeus amarus	Ν		Y	Ν	Ν	FV	0	••	2	0	0	0
Rivers & lakes	1994	А	Hydromantes strinatii	Ν		Y	Y	Ν	FV	0	•	2	0	0	0
Sparsely vegetated land	1240	Н	Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium spp.	Ν	Y				U1	0	••	8	3	2	40
Sparsely vegetated land	8210	Н	Calcareous rocky slopes with chasmophytic vegetation	Ν	Y				ХХ	0	•••	8	4	1	40
Sparsely vegetated land	8310	Н	Caves not open to the public	Ν	Y				ХХ	0	•••	8	4	0	32
Sparsely vegetated land	8220	н	Siliceous rocky slopes with chasmophytic vegetation	Ν	Y				ХХ	0	•••	6	2	0	12

Habitat group	N2K code	Taxono- mical	Description	Prio	I	Ш	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
		group													
Sparsely vegetated land	8230	Н	Siliceous rock with pioneer vegetation of the Sedo- Scleranthion or of the Sedo albi-Veronicion dillenii	N	Y				xx	0	•	4	2	0	8
Sparsely vegetated land	1230	Н	Vegetated sea cliffs of the Atlantic and Baltic Coasts	N	Y				U1	0	•••	2	2	1	6
Sparsely vegetated land	8240	Н	Limestone pavements	Y	Y				U1	0	•••	3	1	1	6
Sparsely vegetated land	8130	Н	Western Mediterranean and thermophilous scree	N	Y				хх	0	•••	4	1	0	4
Sparsely vegetated land	8140	Н	Eastern Mediterranean screes	N	Y				FV	0	•	2	1	0	2
Sparsely vegetated land	8110	Н	Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia ladani)	N	Y				FV	0	•••	2	0	0	0
Sparsely vegetated land	8120	Н	Calcareous and calcshist screes of the montane to alpine levels (Thlaspietea rotundifolii)	N	Y				FV	0	•••	2	0	0	0
Sparsely vegetated land	8320	Н	Fields of lava and natural excavations	N	Y				FV	0	•••	2	0	0	0
Sparsely vegetated land	1311	Μ	Pipistrellus savii	N		Ν	Y	N	хх	0		6	6	0	36
Sparsely vegetated land	1057	I	Parnassius apollo	N		Ν	Y	N	ХХ	0		4	6	2	32
Sparsely vegetated land	1283	R	Coronella austriaca	N		Ν	Y	N	хх	0		5	4	2	30
Sparsely vegetated land	1237	R	Podarcis filfolensis	N		Ν	Y	N	FV	0		5	3	1	20
Sparsely vegetated land	4082	Р	Crepis pusilla	N		Y	Y	N	хх	0	٠	3	4	1	15
Sparsely vegetated land	1424	Р	Asplenium hemionitis	N		Ν	Y	N	FV	0		3	2	2	12
Sparsely vegetated land	1256	R	Podarcis muralis	N		Ν	Y	N	FV	0		4	2	0	8
Sparsely vegetated land	1228	R	Cyrtopodion kotschyi	N		Ν	Y	N	ХХ	0		3	2	0	6

Habitat group	N2K code	Taxono- mical	Description	Prio	I	П	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
		group													
Sparsely vegetated land	1229	R	Phyllodactylus europaeus	N		Y	Y	N	U2	0	••	2	2	1	6
Sparsely vegetated land	1249	R	Lacerta monticola	N		Y	Y	N	xx	0	•••	2	2	1	6
Sparsely vegetated land	1289	R	Telescopus fallax	N		Ν	Y	N	хх	0		3	2	0	6
Sparsely vegetated land	1643	Р	Limonium strictissimum	Y		Y	Y	N	U1	0	••	2	2	1	6
Sparsely vegetated land	4114	Р	Linaria pseudolaxiflora	N		Y	Y	N	U2	0	••	2	2	1	6
Sparsely vegetated land	1284	R	Coluber viridiflavus	N		Ν	Y	Ν	FV	1		4	1	0	4
Sparsely vegetated land	1421	Р	Trichomanes speciosum	N		Y	Y	N	хх	0	•	2	2	0	4
Sparsely vegetated land	1466	Р	Herniaria latifolia ssp. litardierei	Y		Y	Y	Ν	U1	1		2	2	0	4
Sparsely vegetated land	1468	Р	Dianthus rupicola	N		Y	Y	N	FV	1	•••	2	2	0	4
Sparsely vegetated land	1722	Р	Antirrhinum lopesianum	N		Ν	Y	Ν	хх	0		2	1	1	4
Sparsely vegetated land	1465	Р	Silene velutina	Y		Y	Y	Ν	U1	0	••	2	1	0	2
Sparsely vegetated land	1746	Р	Centranthus trinervis	N		Y	Y	Ν	хх	1	•••	2	1	0	2
Sparsely vegetated land	1860	Р	Narcissus fernandesii	N		Y	Y	N	ХХ	0	•	2	1	0	2
Sparsely vegetated land	1885	Р	Festuca elegans	N		Y	Y	N	ХХ	0	•••	2	1	0	2
Sparsely vegetated land	1245	R	Lacerta bedriagae	N		Ν	Y	N	FV	0		2	0	0	0
Sparsely vegetated land	1250	R	Podarcis sicula	N		Ν	Y	N	FV	2		2	0	0	0

Habitat group	N2K code	Taxono- mical group	Description	Prio	I	II	IV	v	MED CS	Positive trends	N2K coverage	Criterion A	Criterion B	Criterion C	A*(B+C)
Sparsely vegetated land	1474	Р	Aquilegia bertolonii	Ν		Y	Y	Ν	FV	0	••	2	0	0	0
Sparsely vegetated land	1496	Р	Brassica insularis	Ν		Y	Y	Ν	FV	1	•	2	0	0	0

NB: In a few cases the CS status for anadromous species may differ from the CS reported by the MS for the marine MED, because CS status for MED was used for analysis (if there were reports from both MMED and MEC for the same species, they can not be merged). CS of few marine species (N2K code: 1223, 1224, 1225, 1227, 1351, 1349, 1366) were reported at the terrestrial level - for these species, there was only one report. Source: Natura 2000 database of end 2011.

Appendix 2. Coverage of the habitat types and species in the Natura 2000 network

Coverage of the Natura 2000 sites was estimated as percentage of habitat area or species distribution covered by the Natura 2000 network (column MED CS in Appendix 1).

Ideally this kind of information gives an indication of the importance of site based measures compared to wider countryside measures for each habitat or species. However, the data from the Natura 2000 Standard Data Forms ('old' SDF of end 2011 database) varies between different Member States (not systematically updated data, difference in the interpretation of habitat typesetc) and habitat types often have an uneven distribution so it is necessary to be very careful with the interpretation of the result of the analysis. In addition, for species only an approximate importance could have been assessed based on the overlap of Article 17 distribution with SCIs. More reliable image of the importance of the network would have been derived from the information on population size which was not available.

An analysis was made covering all habitat types and species of the Mediterranean and Macaronesian region and using symbols indicating how many % of habitat area/species' distribution are within SCIs: $\bullet = 0.50$ %, $\bullet \bullet = 51.75$ % and $\bullet \bullet \bullet = 76.100$ % (see the column "N2K coverage" in the table of the Appendix). These symbols give a rough indication on how much of the habitat area or species distribution are covered by the Natura 2000 network.

Method used

The method used to estimate the coverage in the Natura 2000 network is different between habitat types and species due to the available data quality.

For habitat types the area of the habitat types in the sites indicated in the SDF and the total habitats' area in the Member State/ biogeographical region reported in the Article 17 were used to estimate percentage of habitat area in the network. This information should be more precise in comparison with estimates based on the Article 17 distribution *alone* (which is the only method which can be used for species).

As the information on percentage of the population of species covered by the Natura 2000 network is not available for most of the species the importance of the network was estimated based on generalised gridded distribution of the species. The percentage of coverage by the Natura 2000 network was calculated as a spatial overlap between the generalised Article 17 distribution and generalised boundaries of sites proposed for a particular species.

Habitat types and species present in only one MS in Mediterranean region are excluded from calculations as these are not discussed during the Natura 2000 seminar.

A recent analysis by ETC/BD showed that there is a positive relationship between the rarity of the habitats/species and the coverage by the network. This means that the smaller is the area where the habitat/species occurs the higher is the coverage by SCIs.