

Fourth Mediterranean Natura 2000 seminar

Cyprus, Larnaca, 17-19 April 2024

Natura 2000 Biogeographical Process

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

SPANISH APPROACH TO SETTING FAVORABLE REFERENCE VALUES OF HCI

Prof. Dr. Antonio Camacho

University of Valencia

Spain

antonio.camacho@uv.es

Prof. Dr. Antonio Camacho - FRV for HCI in Spain – 4th Mediterranean Biogeographical Seminar – Larnaca - Cyprus

Ezousa River (SAC Episkopi Morou Nerou) Picture © Marina Xenophontos

Favourable Reference Values (FRVs) are quantifiable indicators established to set what is the favourable conservation status of species and habitats.

They are a tool to deal with the consideration of long-term viability of a species or habitat in their natural range including ecological variations.

FRV are still **poorly developed** and often **inconsistently applied** across Member States. Because:

- Methodologies to determine FRVs are often undocumented.
- FRV were sometimes not explicitly defined.
- Expert opinion was frequently applied for weighting FRV factors.
- The use of operators (>, >>, ≈) was not harmonised.
- Feasibility considerations had often not been used in setting FRV.

Before setting the favourable reference values, it is advisable to collect all the relevant information about a habitat in order to understand their ecological and historical context:

- current situation and assessment of deficiencies, i.e. any pressures, problems
- trends (short-term, long-term, historical, i.e. well before the Directive came into force)
- natural ecological and geographical variation (including variation in species composition, variation in conditions in which habitats occur, variation of ecosystems)
- ecological potential (potential extent of range, taking into account physical and ecological conditions, contemporary potential natural vegetation)
- natural range, historical distribution and causes of change
- connectivity and fragmentation
- dynamics of the habitat type
- requirements of its typical species.

The reference-based approach considers the historical distribution or area of a habitat in a period when the habitat was supposed to be in a (stable) favourable condition. Empirical areas corresponding to a particular historical baseline are used to set FRV. The challenge is to determine how much of the baseline needs to be restored to represent a favourable area.

Model-based approaches use habitat type-specific features, such as habitat suitability or required area for proper functioning

General principles for the process of setting FRVs:

- FRVs should be set on the basis of ecological/biological considerations
- FRVs should be set using the best available knowledge and scientific expertise
- FRVs should be set taking into account the precautionary principle and include a safety margin for uncertainty

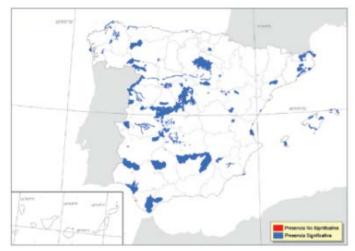
- FRVs should not, in principle, be lower than the values when the Habitats Directive came into force, as most habitats have been listed in the Annexes because of their unfavourable status.

- The area (and its distribution) at the date of entry into force of the Directive does not necessarily equal the FRVs

FRVs are not necessarily equal to 'national targets': Setting targets would mean the translation of such reference values into operational, practical and feasible short-, mid-and long-term targets/milestones.

FRVs do not automatically correspond to a given 'historical maximum', or a specific historical date. Historical information (e.g. a past stable situation before changes occurred due to reversible pressures) should, however, inform judgements on FRVs

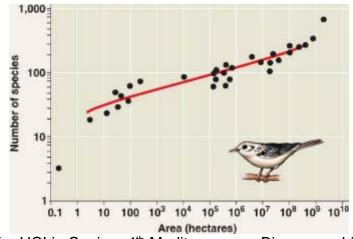
FRVs do not automatically correspond to the 'potential value' (maximum possible extent; e.g. overlapping) which, however, should be used to understand restoration possibilities and constraints.


FRV for habitats – Some other possible approaches

- Based on habitats features (related to area if FRA)
- Abiotic & Biotic features
- FRA, is the area covered by the HCI being enough to ensure long-term conservation of the habitat and its species (within the biogeographic region?).
- Ideally, the FRA should not be lower than that allowing all typical species to exist in the habitat type
- Additional considerations can be made, for instance, that the number of localities in which the rarest species appear would not be lower than a certain number
- Which typical species? EUR28 Manual + (or selection)
- Red list of Ecosystems
- Minimum dynamic area (MDA)

FRA for habitats Example HCI 3170 Mediterranean temporary ponds

- HCI 3170 in Spain occupies more than 32000 Ha, from which nearly 40 % is located in up to 120 Special Areas of Conservation (SAC)
- In **most** of these (106 SAC) this **HIC occupies less than 5 %** of the SCA surface, in 12 SAC it occupies between 5 and 15 %, and only in 2 of them the HCI 3170 spans for up to 15 to 30 % of the SAC area.
- In Spain, up to 88 % of the surface of this HCI is located in the Mediterranean biogeographic region, and the remaining is found in the Atlantic region.



FRV for habitats – Community Approach (Camacho et al, 2017)

- The community approach is based on the relative saturation in typical species of the community according to the area of the HCI occupied within the biogeographic region of each member state.
- This approach uses the relationship between the number of species and the area of the habitat considering typical species. A higher area, hypothetically, offers more niches to be occupied by more species (species-area relationship) and additionally, according to island biogeography, larger habitat patches are bigger targets for colonization (Lomolino et al., 2016). Thus, the larger the extent of the habitat, the higher the number of (typical) species it can harbor

Prof. Dr. Antonio Camacho - FRV for HCI in Spain - 4th Mediterranean Biogeographical Seminar - Larnaca - Cyprus

FRV for habitats 3170 MTP – Community Approach

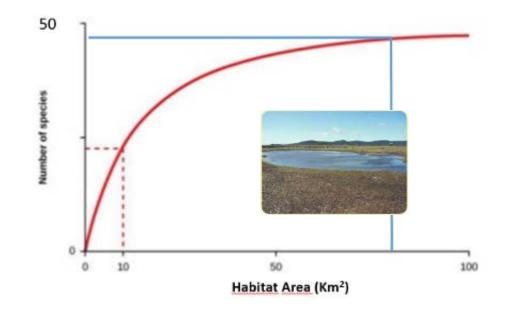
• Typical species (EUR28 Manual) - 41 species:

Agrostis pourretii, Centaurium spicatum, Chaetopogon fasciculatus, Cicendia filiformis, Crypsis aculeata, C. alopecuroides, C. schoenoides, Cyperus flavescens, C. fuscus, C. michelianus, Damasonium alisma, Elatine macropoda, Eryngium corniculatum, E. galioides, Exaculum pusillum, Fimbristylis bisumbellata, Glinus lotoides, Gnaphalium uliginosum, Illecebrum verticillatum, #Isoetes boryana, I. delilei, I. duriei, I. heldreichii, I. histrix, #I. malinverniana, I. velatum, Juncus bufonius, J. capitatus, J. pygmaeus, J. tenageia, Lythrum castellanum (= L. baeticum), *L. flexuosum, L. tribracteatum, #Marsilea batardae, #M. strigosa, Mentha cervina, Ranunculus dichotomiflorus, R. lateriflorus, Serapias lingua, S. neglecta, S. vomeracea.

• But only 18 species in Spain

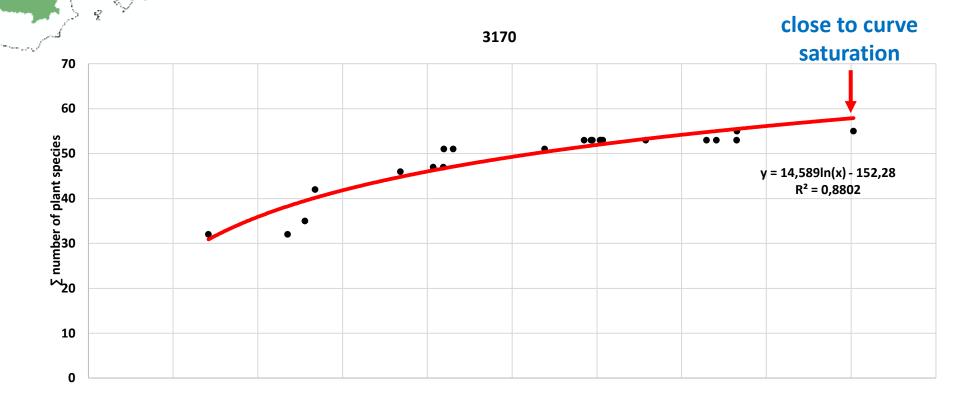
• Agrostis pourretii, Cicendia filiformis, Eryngium corniculatum, Illecebrum verticillatum, Isoetes durieui, I. histrix, I. velatum, Juncus bufonius, J. capitatus, J. pygmaeus, J. tenageia, Lythrum castellanum (= L. baeticum), *L. flexuosum, L. tribracteatum, #Marsilea batardae, #M. strigosa, Mentha (Preslia) cervina, Ranunculus lateriflorus,

• Plus other typical species (national level) (Spanish Society for Plant Conservation) + 26 spp:


- Antinoria agrostidea subsp. annua, Baldellia ranunculoides, Blackstonia perfoliata, Briza minor, Centaurium pulchellum, Crassula vaillantii, Damasonium polyspermum, Gnaphalium luteo-album, Hypericum humifusum, Illecebrum verticillatum, Isoetes setaceum, Isolepis setacea, Lotus subbiflorus, Lythrum acutangulum, L. borysthenicum, L. hyssopifolia, L. thymifolia, Mentha pulegium, Myosurus minimus, Polypogon maritimus, Ranunculus batrachioides subsp. brachypodus, R. longipes, Sedum lagascae, Silene laeta, Solenopsis laurentia, Verbena supina.
- Up to 44 typical plant species can be expected to appear in the whole set of localities where HCI 3170 appears.
- Inventories of typical species (plants?) for a representative set of localities are needed

FRV for habitats Community Approach

e.g. current areas > Minimum FRA


Other taxocoenoses (e.g. amphibians).

Alytes cisternasii, Bufo calamita, Bufo viridis, Discoglossus jeanneae, Discoglossus galganoi, Discoglossus pictus, Hyla arborea, Hyla meridionalis, Lissotriton boscai, Pelobates cultripes, Pelodytes ibericus, Pelodytes punctatus, Pleurodeles waltl, Rana perezi, Salamandra salamandra, Triturus marmoratus, Triturus pygmaeus

FRV for habitats – Community Approach

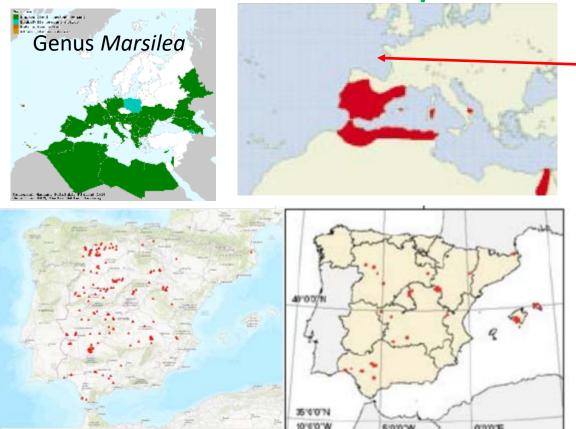
Inventoried **3170*** habitats with a catalogue of aquatic and marginal plant species

∑ surface habitat type

Prof. Dr. Antonio Camacho - FRV for HCI in Spain – 4th Mediterranean Biogeographical Seminar – Larnaca - Cyprus

FRV for habitats – Species+ Approach (Camacho et al, 2017)

- This approach is exemplified by the evaluation of the conservation status of a typical species, but for a
 proper evaluation it needs to be complemented by the simultaneous assessment with other species also
 typical from the habitat.
- In this case these typical species are also diagnostic, this is, they are able to evaluate the conservation status of the HCI by themselves because of their ecological (including habitat area) requirements. As such, this approach does not only consider areal requirements, but also combines it with the status of the structure and function, since the ecological requirements of the targeted species must be fitted both in terms of enough area but also of enough ecological quality.
- This approach basically consists in comparison of the number of localities (and its extension) where the HCI appears and the number where a typical and diagnostic species is found.



- **3 main diagnostic plant species** for the HCI 3170 in Spain (+ 5 spp) Spanish Society for Plant Conservation
- *Marsilea strigosa* Willd. This is a specialist species for the ecological conditions of the HCI 3170, with a circum-Mediterranean potential distribution, though more restricted current distribution.
- Juncus pygmaeus Rich. This is an almost exclusive species for the HCI 3170, distributed in Western and southern Europe, Anatolia and the north of Africa.
- *Mentha cervina* L. This species, almost exclusive for the HCI 3170, has an important structural role in the habitat, being distributed in the Iberian Peninsula, south of France, and the north of Africa.

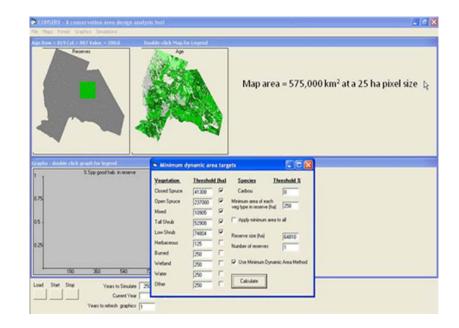
FRV for habitats – Species+ Approach

• Example with Marsilea strigosa

Most of the occurrences of *Marsiliea strigosa* are associated to temporary ponds. Thus, a certain area of the habitat is likely needed to ensure the conservation of this typical species of HCI3170.

This analysis shows that *Marsilea strigosa* is present in 87 from 137 Mediterranean temporary ponds larger than 1 Ha, this is, a 63.5 % of occurrence.

Weighted use of 3 + 5 typical & diagnostic species


Weighting criteria (e.g. species from annexes II and IV could have higher load on the index. (Marsilea strigosa, M. batardae, and Lythrum flexosum)

Minimum Dynamic Area

Pickett and Thompson (1978) defined a minimum dynamic area (MDA) as "the smallest area with a natural disturbance regime, which maintains internal recolonization sources, and hence minimizes extinction".

- While the MDA concept posits general design principles for selfsufficient reserves, no explicit or quantitative criteria on how to construct a MDA have been established,
- Dynamic simulation models (Peters *et al.* 1997) and temporal reconstruction of patch mosaics using forest history data (Baker 1989) have been proposed.
- By relaxing the restrictive conditions of the MDA and making criteria more explicit, it may be possible to identify practical approaches for the design of large reserves to incorporate natural disturbance and maintain ecological processes.

So far, "relaxed" approach used for reserve design

WORKSHOP: FORMALISATION OF CRITERIA AND APPROACHES TO SET THE FAVOURABLE REFERENCE VALUES OF HABITAT

TYPES OF COMMUNITY INTEREST

Procedures to establish the Favourable Reference Area

СҮ	 Area resulted from mapping Distribution (area of occurrence of species communities) of HCIs (initially mapped/re mapped) Other existing informations e.g. water bodies maps, vegetation maps FRA was resulted after assessing the parameters and use of the operators in Access CDR tool (according to guidelines and experts opinion).
ES	 Operators instead of absolute values because of the high degree of uncertainty Mostly the same value as when the HD came into force. Expert judgement with the help of limited GIS analyses.
FR	Unknown
GR	 the potential natural distribution of HCI the relation of the potential natural distribution of HCI to the current area of HCI the consideration of recent and historical changes and trends of HCI area the best expert judgement
IT	
МТ	By the current situation of the habitat (with respect to pressures, ecological potential, habitat dynamics and typical species and their requirements) and comparing it with the historical situation , focusing on distribution and abundance. This is most of the time supported by expert opinion
РТ	Any defined procedure to establish this value. References from "Expert opinion" to answer this question in the last Monitoring Report.

Workshop Formalisation						
of criteria and approaches						
to set the FRV of HCI						
Madrid, November 2019						

5 MS 4 MS 3 MS 2 MS 1 MS

3170* typical species	CY	ES	FR	GR	MT	PT	IT	3170*
Agrostis castellana				-				Dama
Agrostis pourretii								Dama
Alopecurus aequalis								Elatine
Anagallis minima								Elatine
Antinoria agrostidea								Elatine
Antinoria insularis								Elatine
Artemisia molinieri								Eleoch
Asteriscus aquaticus								Eleoch
Baldellia ranunculoides								Eleoch
Baldellia repens								Erophi
Callitriche brutia								Eryngi
Callitriche pulchra								Eryngi
Callitriche truncata								<mark>Eryngi</mark>
Centaurium maritimum								Exacu
Centaurium pulchellum								Exacu
Chaetonychia cymosa								Fimbri
Chaetopogon fasciculatus								Gypso
Chara spp.								Heliot
Cicendia filiformis								Illeceb
Coronopus navasii								Isoete
Coronopus squamatus								Isoete
Corrigiola litoralis								Isoete
Corrigiola spp.								Isoete
Crassula alata								Isoete
Crassula tillaea								Isoete
Crassula vaillantii								Isoeto
Crepis pusilla								Isolep
Crypsis aculeata								Isolep
Crypsis schoenoides								Isolep
Crypsis spp.								Isolep
Damasonium alisma								Juncus Juncus

3170* typical species	CY	ES	FR	GR	MT	PT	IT
Damasonium bourgaei							
Damasonium polyspermum							
Elatine alsinastrum							
Elatine gussonei							
Elatine macropoda							
Elatine spp.							
Eleocharis acicularis							
Eleocharis multicaulis							
Eleocharis palustris							
Erophila praecox							
Eryngium corniculatum							
Eryngium galioides							
Eryngium viviparum							
Exacullum pusillum							
Exaculum pusillum							
Fimbristylis bisumbellata							
Gypsophila muralis							
Heliotropium supinum							
Illecebrum verticillatum							
Isoetes duriaei							
Isoetes histrix							
Isoetes setaceum							
Isoetes spp.							
Isoetes velata							
Isoetes velatum							
Isoeto-Nanojuncetea							
Isolepis cernua							
Isolepis setacea							
Isolepis pseudosetacea							
Isolepis spp.							
Juncus bufonius							
Juncus capitatus							

5 MS	3170* typical species	CY	ES	FR	GR	MT	PT	IT	3170* typical species	CY	ES	FR	GR	MT P	ТГ
	Juncus hybridus	Cr	ES	ГК	GK		PI	11	Polypogon maritimus						
4 MS	Juncus pygmaeus								Pulicaria paludosa						
3 MS	Juncus pygnaeus Juncus spp.								Pycreus flavescens						
2 MS	Juncus tenageia								Radiola linoides						
1 MS	Lepidium spinosum						_		Ranunculus batrachiodes						
	Limosella aquatica						_		Ranunculus lateriflorus						
	Lotus angustissimus						_		Ranunculus longipes						
	Lotus hispidus								Ranunculus marginatus						
	Lotus parviflorus								Ranunculus nodiflorus						
	Lotus spp.								Ranunculus peltatus						
	Lythrum baeticum								Ranunculus revellierii						
	Lythrum borysthenicum								Riella notarisii						
Workshop Formalisation	Lythrum flexuosum								Schoenoplectus supinus						
of criteria and approaches	Lythrum hyssopifolia								Sedum eriocarpum subsp. porphyreum						
to set the FRV of HCI	Lythrum portula						_		Sedum caeruleum						
	Lythrum spp.								Sedum maireanum						
Madrid, November 2019	Lythrum thymifolia						_		Sedum microcarpum						
	Lythrum tribracteatum						_		Sedum nevadense						
	Marsilea batardae								Sisymbrella aspera						
	Marsilea strigosa								Solenopsis laurentia						
	Mentha cervina								Spergula purpurea						
	Mentha pulegium								Spergularia bocconei						
	Montia arvensis								Spergularia capillacea						
	<i>Myosotis sicula</i>								Trifolium cernuum						
	Myosurus heldreichii								Trifolium micranthum						
	Myosurus minimus								Trifolium ornithopodiodes						
	Ophioglossum azoricum								Trifolium retusum						
	Ophioglossum lusitanicum								Trifolium suffocatum						
	Pilularia minuta								Verbena supina						
	Plantago cretica								Veronica anagalloides						
	Plantago weldenii								Zannichellia melitensis						
	Poa infirma								Zannichellia palustris						

Promising approaches to establish the Favourable Reference Values at the Member State scale

REFERENCE VALUES AT MEMBER STATE LEVEL	POINTS
Species-area curve	11
Potential distribution (modelling)	6
Historical references	2
Randomisation with spatial aspects	2
Viability analysis for (some) typical spp.	1
Ecological variability	1
Remote sensing	1

Workshop Formalisation of criteria and approaches to set the FRV of HCI _Madrid, November 2019

Fourth Mediterranean Natura 2000 seminar

Cyprus, Larnaca, 17-19 April 2024

Natura 2000 Biogeographical Process

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

SPANISH APPROACH TO SETTING FAVORABLE REFERENCE VALUES OF HCI

Prof. Dr. Antonio Camacho

University of Valencia

Spain

antonio.camacho@uv.es

Prof. Dr. Antonio Camacho - FRV for HCI in Spain – 4th Mediterranean Biogeographical Seminar – Larnaca - Cyprus

Ezousa River (SAC Episkopi Morou Nerou) Picture © Marina Xenophontos